×

Differential covariance: a new method to estimate functional connectivity in fMRI. (English) Zbl 1453.92164

Summary: Measuring functional connectivity from fMRI recordings is important in understanding processing in cortical networks. However, because the brain’s connection pattern is complex, currently used methods are prone to producing false functional connections. We introduce differential covariance analysis, a new method that uses derivatives of the signal for estimating functional connectivity. We generated neural activities from dynamical causal modeling and a neural network of Hodgkin-Huxley neurons and then converted them to hemodynamic signals using the forward balloon model. The simulated fMRI signals, together with the ground-truth connectivity pattern, were used to benchmark our method with other commonly used methods. Differential covariance achieved better results in complex network simulations. This new method opens an alternative way to estimate functional connectivity.

MSC:

92C55 Biomedical imaging and signal processing
92B20 Neural networks for/in biological studies, artificial life and related topics

Software:

QUIC; glasso; GCCA
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26(1), 63-72. ,
[2] Banerjee, O., Ghaoui, L. E., d’Aspremont, A., & Natsoulis, G. (2006). Convex optimization techniques for fitting sparse gaussian graphical models. In Proceedings of the 23rd International Conference on Machine Learning (pp. 89-96). New York: ACM. ,
[3] Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2002). Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. Journal of Neuroscience, 22(19), 8691-8704. ,
[4] Bonjean, M., Baker, T., Lemieux, M., Timofeev, I., Sejnowski, T., & Bazhenov, M. (2011). Corticothalamic feedback controls sleep spindle duration in vivo. Journal of Neuroscience, 31(25), 9124-9134. ,
[5] Buxton, R. B., Wong, E. C., & Frank, L. R. (1998). Dynamics of blood flow and oxygenation changes during brain activation: The balloon model. Magnetic Resonance in Medicine, 39(6), 855-864. ,
[6] Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., & Willsky, A. S. (2011). Rank-sparsity incoherence for matrix decomposition. SIAM Journal on Optimization, 21(2), 572-596. , · Zbl 1226.90067
[7] Chen, J.-Y., Chauvette, S., Skorheim, S., Timofeev, I., & Bazhenov, M. (2012). Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation. Journal of Physiology, 590(16), 3987-4010. ,
[8] Chickering, D. M. (2003). Optimal structure identification with greedy search. Journal of Machine Learning Research, 3, 507-554. , · Zbl 1084.68519
[9] Cox, D. R., & Wermuth, N. (1996). Multivariate dependencies: Models, analysis and interpretation. Boca Raton, FL: CRC Press. · Zbl 0880.62124
[10] Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3), 432-441. , · Zbl 1143.62076
[11] Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19(4), 1273-1302. ,
[12] Geweke, J. F. (1984). Measures of conditional linear dependence and feedback between time series. Journal of the American Statistical Association, 79(388), 907-915. , · Zbl 0553.62083
[13] Heeger, D. J., & Ress, D. (2002). What does FMRI tell us about neuronal activity?Nature Reviews Neuroscience, 3(2), 142-151. ,
[14] Hsieh, C.-J., Sustik, M. A., Dhillon, I. S., & Ravikumar, P. (2014). QUIC: Quadratic approximation for sparse inverse covariance estimation. Journal of Machine Learning Research, 15(1), 2911-2947. · Zbl 1319.65048
[15] Hsieh, C.-J., Sustik, M. A., Dhillon, I. S., Ravikumar, P. K., & Poldrack, R. (2013). BIG & QUIC: Sparse inverse covariance estimation for a million variables. In C. J. C. Burgess, L. Bottou, M. Welling, Z. Ghahramani, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 26 (pp. 3165-3173). Red Hook, NY: Curran.
[16] Khalidov, I., Fadili, J., Lazeyras, F., Van De Ville, D., & Unser, M. (2011). Activelets: Wavelets for sparse representation of hemodynamic responses. Signal Processing, 91(12), 2810-2821. ,
[17] Laumann, T. O., Gordon, E. M., Adeyemo, B., Snyder, A. Z., Joo, S. J., Chen, M.-Y., … Petersen, S. E. (2015). Functional system and areal organization of a highly sampled individual human brain. Neuron, 87(3), 657-670. ,
[18] Lin, T. W., Das, A., Krishnan, G. P., Bazhenov, M., & Sejnowski, T. J. (2017). Differential correlation: A new method to estimate sparse connectivity from neural recordings. Neural Computation, 29(10), 2581-2632. , · Zbl 1414.92178
[19] Lin, Z., Liu, R., & Su, Z. (2011). Linearized alternating direction method with adaptive penalty for low-rank representation. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, & K. Q. Weinberger (Eds.), Advances in neural information processing systems, 24 (pp. 612-620). Red Hook, NY: Curran.
[20] Logothetis, N. K. (2002). The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 357(1424), 1003-1037. ,
[21] Meek, C. (1995). Causal inference and causal explanation with background knowledge. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (pp. 403-410). San Mateo, CA: Morgan Kaufmann.
[22] Mumford, J. A., & Ramsey, J. D. (2014). Bayesian networks for FMRI: A primer. NeuroImage, 86, 573-582. ,
[23] Obata, T., Liu, T. T., Miller, K. L., Luh, W.-M., Wong, E. C., Frank, L. R., & Buxton, R. B. (2004). Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: Application of the balloon model to the interpretation of BOLD transients. NeuroImage, 21(1), 144-153. ,
[24] Patel, R. S., Bowman, F. D., & Rilling, J. K. (2006). A Bayesian approach to deter mining connectivity of the human brain. Human Brain Mapping, 27(3), 267-276. ,
[25] Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433-447. ,
[26] Ramsey, J. D., Hanson, S. J., Hanson, C., Halchenko, Y. O., Poldrack, R. A., & Glymour, C. (2010). Six problems for causal inference from FMRI. NeuroImage, 49(2), 1545-1558. ,
[27] Ramsey, J., Zhang, J., & Spirtes, P. L. (2012). Adjacency-faithfulness and conservative causal inference. arXiv:1206.6843.
[28] Reid, A. T., Headley, D. B., Mill, R. D., Sanchez-Romero, R., Uddin, L. Q., Marinazzo, D., … Cole, M. W. (2019). Advancing functional connectivity research from association to causation. Nature Neuroscience, 1(10).
[29] Richardson, T., & Spirtes, P. (1996). Automated discovery of linear feedback models.
[30] Seth, A. K. (2010). A Matlab toolbox for Granger causal connectivity analysis. Journal of Neuroscience Methods, 186(2), 262-273. ,
[31] Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., … Woolrich, M. W. (2011). Network modelling methods for FMRI. NeuroImage, 54(2), 875-891. ,
[32] Stephan, K. E., Weiskopf, N., Drysdale, P. M., Robinson, P. A., & Friston, K. J. (2007). Comparing hemodynamic models with DCM. NeuroImage, 38(3), 387-401. ,
[33] Stevenson, I. H., Rebesco, J. M., Miller, L. E., & Körding, K. P. (2008). Inferring functional connections between neurons. Current Opinion in Neurobiology, 18(6), 582-588. ,
[34] Wu, G.-R., Liao, W., Stramaglia, S., Ding, J.-R., Chen, H., & Marinazzo, D. (2013). A blind deconvolution approach to recover effective connectivity brain networks from resting state FMRI data. Medical Image Analysis, 17(3), 365-374. ,
[35] Yatsenko, D., Josić, K., Ecker, A. S., Froudarakis, E., Cotton, R. J., & Tolias, A. S. (2015). Improved estimation and interpretation of correlations in neural circuits. PLOS Computational Biology, 2, 199-207.
[36] Zhang, J. (2008). On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. Artificial Intelligence, 172(16), 1873-1896. , · Zbl 1184.68434
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.