×

Collocation methods for solving two-dimensional neural field models on complex triangulated domains. (English) Zbl 1404.92058

Constanda, Christian (ed.) et al., Integral methods in science and engineering, Volume 2. Practical applications. Based on talks given at the 14th international conference, Padova, Italy, July 25–29, 2016. Basel: Birkhäuser/Springer (ISBN 978-3-319-59386-9/hbk; 978-3-319-59387-6/ebook). 169-178 (2017).
Summary: Neural field models are commonly used to describe the average activity of large populations of cortical neurons, treating the spatial domain as being continuous. Here we present an approach for solving neural field equations that enables us to consider more physiologically realistic scenarios, including complicated domains obtained from MRI data, and more general connectivity functions that incorporate, for example, cortical geometry. To illustrate our methods, we solve a popular 2D neural field model over a square domain, which we triangulate, first uniformly and then randomly. Our approach involves solving the integral form of the partial integro-differential equation directly using collocation techniques, which we compare to the commonly used method of fast Fourier transforms. Our goal is to apply and extend our methods to analyse more physiologically realistic neural field models, which are less restrictive in terms of the types of geometries and/or connectivity functions they can treat, when compared to Fourier based methods.
For the entire collection see [Zbl 1381.45001].

MSC:

92C20 Neural biology
45K05 Integro-partial differential equations
65R20 Numerical methods for integral equations

Software:

DistMesh
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27(2), 77-87 (1977) · Zbl 0367.92005 · doi:10.1007/BF00337259
[2] Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind, vol. 4. Cambridge University Press, Cambridge (1997) · Zbl 0899.65077 · doi:10.1017/CBO9780511626340
[3] Bojak, I., Oostendorp, T.F., et al.: Towards a model-based integration of co-registered electroencephalography/functional magnetic resonance imaging data with realistic neural population meshes. Phil. Trans. R. Soc. A 369, 3785-3801 (2011) · Zbl 1239.92065 · doi:10.1098/rsta.2011.0080
[4] Bressloff, P.C.: Spatiotemporal dynamics of continuum neural fields. J. Phys. A Math. Theor. 45(3), 033001 (2011) · Zbl 1263.92008 · doi:10.1088/1751-8113/45/3/033001
[5] Bressloff, P.C., Cowan, J.D., et al.: Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Phil. Trans. R. Soc. B: Biol. Sci. 356(1407), 299-330 (2001)
[6] Coombes, S.: Large-scale neural dynamics: simple and complex. NeuroImage 52(3), 731-739 (2010) · doi:10.1016/j.neuroimage.2010.01.045
[7] Ermentrout, B.: Neural networks as spatio-temporal pattern-forming systems. Rep. Progress Phys. 61(4), 353-430 (1998) · doi:10.1088/0034-4885/61/4/002
[8] Henderson, J.A., Robinson, P.A.: Relations between geometry of cortical gyrification and white matter network architecture. Brain Connect. 4(2), 112-130 (2014) · doi:10.1089/brain.2013.0183
[9] Jirsa, V.K., Hermann H.: Field theory of electromagnetic brain activity. Phys. Rev. Lett. 77(5), 960-963 (1996) · doi:10.1103/PhysRevLett.77.960
[10] Laing, C.R.: Numerical bifurcation theory for high-dimensional neural models. J. Math. Neurosci. 4, 21908567 (2014) · Zbl 1333.92018 · doi:10.1186/2190-8567-4-13
[11] Laing, C.R., Troy, W.C., et al.: Multiple bumps in a neuronal model of working memory. SIAM J. Appl. Math. 63(1), 62-97 (2002) · Zbl 1017.45006 · doi:10.1137/S0036139901389495
[12] Lo, Y.-P., O’Dea, R., et al.: A geometric network model of intrinsic grey-matter connectivity of the human brain. Sci. Rep. 5, 15397 (2015) · doi:10.1038/srep15397
[13] O’Dea, R., Crofts, J.J., et al.: Spreading dynamics on spatially constrained complex brain networks. J. R. Soc. Interface 10(81), 20130016 (2013) · doi:10.1098/rsif.2013.0016
[14] Persson, P.O., Strang, G.: A simple mesh generator in MATLAB. SIAM Rev. 46(2), 329-345 (2004) · Zbl 1061.65134 · doi:10.1137/S0036144503429121
[15] Rankin, J., Avitabile, D., et al.: Continuation of localized coherent structures in nonlocal neural field equations. SIAM J. Sci. Comput. 36(1), B70-B93 (2014) · Zbl 1312.92015 · doi:10.1137/130918721
[16] Sanz-Leon, P., Knock, S.A., et al.: Mathematical framework for large-scale brain network modelling in the virtual brain. Neuroimage 111, 385-430 (2015) · doi:10.1016/j.neuroimage.2015.01.002
[17] Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12(1), 1-24 (1972) · doi:10.1016/S0006-3495(72)86068-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.