×

Conservation laws of space-time fractional mZK equation for Rossby solitary waves with complete Coriolis force. (English) Zbl 1451.76031

Summary: The study of Rossby solitary waves are of great significance in physical oceanography, atmospheric physics, water conservancy project, military and communications engineering, etc. All the time, in the study of Rossby solitary waves, people have been focusing on integer order models. Recently, fractional calculus has become a new research hotspot, and it has opened a new door to research atmospheric and ocean. Thus, the fractional order model has the potential value in the study of Rossby solitary waves. In the present paper, according to the quasi-geostrophic potential vorticity equation with the complete Coriolis force, we get a new integer order mZK equation. Using the semi-inverse method and the fractional variational principle, the space-time fractional mZK(STFmZK) equation is obtained. To better understand the property of Rossby solitary waves, we study Lie symmetry analysis, nonlinear self-adjointness, similarity reduction by applying the STFmZK equation. In the end, the conservation and Caputo fractional derivative are discussed, respectively.

MSC:

76B25 Solitary waves for incompressible inviscid fluids
35R11 Fractional partial differential equations
76M60 Symmetry analysis, Lie group and Lie algebra methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. W. Yang, Z. H. Xu and D. Z. Yang, ZK-Burgers equation for three-dimensional Rossby solitary waves and its solutions as well as chirp effect, Adv. Differ. Equ. 167 (2016), 1-22.; Yang, H. W.; Xu, Z. H.; Yang, D. Z., ZK-Burgers equation for three-dimensional Rossby solitary waves and its solutions as well as chirp effect, Adv. Differ. Equ., 167, 1-22 (2016) · Zbl 1419.35180
[2] Y. L. Shi, B. S. Yin, H. W. Yang, D. Z. Yang and Z. H. Xu, Dissipative nonlinear Schrödinger equation for Envelope Solitary Rossby waves with dissipation effect in stratified fluids and its solution, Abstract Appl. Anal. 2014 (2014), 643652.; Shi, Y. L.; Yin, B. S.; Yang, H. W.; Yang, D. Z.; Xu, Z. H., Dissipative nonlinear Schrödinger equation for Envelope Solitary Rossby waves with dissipation effect in stratified fluids and its solution, Abstract Appl. Anal., 2014, 643652 (2014) · Zbl 1474.35589
[3] H. W. Yang, Q. F. Zhao, B. S. Yin and H. H. Dong, A new Integro-Differential equation for Rossby solitary waves with topography effect in deep rotational fluids, Abstract Appl. Anal. 2013 (2013), 597807.; Yang, H. W.; Zhao, Q. F.; Yin, B. S.; Dong, H. H., A new Integro-Differential equation for Rossby solitary waves with topography effect in deep rotational fluids, Abstract Appl. Anal., 2013, 597807 (2013) · Zbl 1432.76067
[4] S. G. H. Philander, Forced oceanic waves, Rev. Geophys. Space Phys. 16 (1978), 15-46.; Philander, S. G. H., Forced oceanic waves, Rev. Geophys. Space Phys., 16, 15-46 (1978)
[5] M. Tomczak and J. S. Godfrey, Regional oceanography: An introduction, Pergamon Press, 16 (1996), 549-550.; Tomczak, M.; Godfrey, J. S., Regional oceanography: An, introduction, 16, 549-550 (1996)
[6] M. Latif and T. P. Bamett, Causes of decadal climate variability over the North Pacific and North America, Sciences, 266 (1994), 634-637.; Latif, M.; Bamett, T. P., Causes of decadal climate variability over the North Pacific and North America, Sciences, 266, 634-637 (1994)
[7] R. G. Zhang, L. G. Yang, J. Song and H. L. Yang, (2+1) dimensional Rossby waves with complete Coriolis force and its solution by homotopy perturbation method, Comput. Math. Appl. 73 (2017), 1996-2003.; Zhang, R. G.; Yang, L. G.; Song, J.; Yang, H. L., (2+1) dimensional Rossby waves with complete Coriolis force and its solution by homotopy perturbation method, Comput. Math. Appl., 73, 1996-2003 (2017) · Zbl 1371.86021
[8] R. R. Long, Solitary waves in the westerlies, J. Atmos. Sci. 21 (1964), 197-200.; Long, R. R., Solitary waves in the westerlies, J. Atmos. Sci., 21, 197-200 (1964)
[9] D. J. Benney, Long non-linear waves in fluid flows, J. Math. Phys. 45 (1966), 52-63.; Benney, D. J., Long non-linear waves in fluid flows, J. Math. Phys., 45, 52-63 (1966) · Zbl 0151.42501
[10] L. G. Redekopp, On the theory of solitary Rossby waves, J. Fluid Mech. 82 (1977), 725-745.; Redekopp, L. G., On the theory of solitary Rossby waves, J. Fluid Mech., 82, 725-745 (1977) · Zbl 0362.76055
[11] M. Wadati, The modified Korteweg-deVries equation, J. Phys. Soc. Jpn. 34 (1973), 1289-1296.; Wadati, M., The modified Korteweg-deVries equation, J. Phys. Soc. Jpn., 34, 1289-1296 (1973) · Zbl 1334.35299
[12] Y. J. Cui, W. J. Ma, Q. Sun and X. W. Su, New uniqueness results for boundary value problem of fractional differential equation, Nonlinear Anal. Modell. Control, 23 (2018), 31-39.; Cui, Y. J.; Ma, W. J.; Sun, Q.; Su, X. W., New uniqueness results for boundary value problem of fractional differential equation, Nonlinear Anal. Modell. Control, 23, 31-39 (2018) · Zbl 1420.34009
[13] C. Yin, S. M. Zhong and Z. B. Bai, Fractional-order switching type control law design for adaptive sliding oode technique of 3d fractional-order nonlinear systems, Complexity, 21 (2016), 363-373.; Yin, C.; Zhong, S. M.; Bai, Z. B., Fractional-order switching type control law design for adaptive sliding oode technique of 3d fractional-order nonlinear systems, Complexity, 21, 363-373 (2016)
[14] E. M. Abulwafa, E. K. El-Shewy and A. A. Mahmoud, Time-fractional effect on pressure waves propagating through a fluid filled circular long elastic tube, Egypt. J. Basic Appl. Sci. 3 (2016), 35-43.; Abulwafa, E. M.; El-Shewy, E. K.; Mahmoud, A. A., Time-fractional effect on pressure waves propagating through a fluid filled circular long elastic tube, Egypt. J. Basic Appl. Sci., 3, 35-43 (2016)
[15] S. A. El-Wakil, E. M. Abulwafa, M. A. Zahran and A. A. Mahmoud, Time-fractional KdV equation formulation and solution using variational method, Nonlinear Dyn. 65 (2011), 55-63.; El-Wakil, S. A.; Abulwafa, E. M.; Zahran, M. A.; A. A. Mahmoud, Time-fractional KdV equation formulation and solution using variational method, Nonlinear Dyn., 65, 55-63 (2011) · Zbl 1234.35219
[16] W. X. Ma and Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Differ. Equ. 264 (2018), 2633-2659.; Ma, W. X.; Zhou, Y., Lump solutions to nonlinear partial differential equations via Hirota bilinear forms, J. Differ. Equ., 264, 2633-2659 (2018) · Zbl 1387.35532
[17] W. X. Ma, X. L. Yong and H. Q. Zhang, Diversity of interaction solutions to the (2+1)-dimensional Ito equation, Comput. Math. Appl., 75 (2018), 289-295.; Ma, W. X.; Yong, X. L.; Zhang, H. Q., Diversity of interaction solutions to the (2+1)-dimensional Ito equation, Comput. Math. Appl.,, 75, 289-295 (2018) · Zbl 1416.35232
[18] M. S. Tao and H. H. Dong, Algebro-geometric solutions for a discrete integrable equation, Discrete Dyn. Nat. Soc. 2017 (2017), 5258375.; Tao, M. S.; Dong, H. H., Algebro-geometric solutions for a discrete integrable equation, Discrete Dyn. Nat. Soc., 2017, 5258375 (2017) · Zbl 1397.37080
[19] Y. Liu, H. H. Dong and Y. Zhang, Solutions of a discrete integrable hierarchy by straightening out of its continuous and discrete constrained flows, Anal. Math. Phys. (2018), DOI:.; Liu, Y.; Dong, H. H.; Zhang, Y., Solutions of a discrete integrable hierarchy by straightening out of its continuous and discrete constrained flows, Anal. Math. Phys. (2018) · Zbl 1420.35294 · doi:10.1007/s13324-018-0209-9
[20] C. N. Lu, C. Fu and H. W. Yang, Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions, Appl. Math. Comput. 327 (2018), 104-116.; Lu, C. N.; Fu, C.; Yang, H. W., Time-fractional generalized Boussinesq equation for Rossby solitary waves with dissipation effect in stratified fluid and conservation laws as well as exact solutions, Appl. Math. Comput., 327, 104-116 (2018) · Zbl 1426.76721
[21] C. Fu, C. N. Lu and H. W. Yang, Time-space fractional (2+1)-dimensional nonlinear Schrödinger equation for envelope gravity waves in baroclinic atmosphere and conservation laws as well as exact solutions, Adv. Differ. Equ. 2018 (2018), 56.; Fu, C.; Lu, C. N.; Yang, H. W., Time-space fractional (2+1)-dimensional nonlinear Schrödinger equation for envelope gravity waves in baroclinic atmosphere and conservation laws as well as exact solutions, Adv. Differ. Equ., 2018, 56 (2018) · Zbl 1445.35281
[22] A. Biwas, 1-Soliton solution of the generalized Zakharov Kuznetsov equation with nonlinear dispersion and time-dependent coefficients, Phys. Lett. A. 373 (2009), 2931-2934.; Biwas, A., 1-Soliton solution of the generalized Zakharov Kuznetsov equation with nonlinear dispersion and time-dependent coefficients, Phys. Lett. A., 373, 2931-2934 (2009) · Zbl 1233.35170
[23] Y. P. Liu and Z. B. Li, The homotopy analysis method for approximating the solution of the modified Korteweg-de Vries equation, Chaos, Solitons and Fractals. 39 (2009), 1-8.; Liu, Y. P.; Li, Z. B., The homotopy analysis method for approximating the solution of the modified Korteweg-de Vries equation, Chaos, Solitons and Fractals, 39, 1-8 (2009) · Zbl 1197.65166
[24] J. G. Zhu and B. B. Hao, A new class of smoothing functions and a smoothing Newton method for complementarity problems, Optim. Lett. 7 (2013), 481-497.; Zhu, J. G.; Hao, B. B., A new class of smoothing functions and a smoothing Newton method for complementarity problems, Optim. Lett., 7, 481-497 (2013) · Zbl 1287.90079
[25] J. Y. Tang, G. P. He, L. Dong and L. Fang, A new one-step smoothing newton method for second-order cone programming, Appl. Math. 57 (2012), 311-331.; Tang, J. Y.; He, G. P.; Dong, L.; Fang, L., A new one-step smoothing newton method for second-order cone programming, Appl. Math., 57, 311-331 (2012) · Zbl 1265.90229
[26] T. J. Bridges, Multi-symplectic structures and wave propagation, Math. Proc. Cambridge Philos. Soc. 121 (1997), 147-90.; Bridges, T. J., Multi-symplectic structures and wave propagation, Math. Proc. Cambridge Philos. Soc., 121, 147-90 (1997) · Zbl 0892.35123
[27] W. P. Hu, Z. C. Deng and Y. Zhang, Multi-symplectic method for peakon-antipeakon collision of quasi-Degasperis-Procesi equation, Comput. Phys. Commun. 185 (2014), 2020-2028.; Hu, W. P.; Deng, Z. C.; Zhang, Y., Multi-symplectic method for peakon-antipeakon collision of quasi-Degasperis-Procesi equation, Comput. Phys. Commun., 185, 2020-2028 (2014) · Zbl 1352.65648
[28] W. P. Hu, Z. C. Deng, S. M. Han and W. R. Zhang, Generalized Multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs, J. Comput. Phys. 235 (2013), 394-406.; Hu, W. P.; Deng, Z. C.; Han, S. M.; Zhang, W. R., Generalized Multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs, J. Comput. Phys., 235, 394-406 (2013) · Zbl 1291.65361
[29] W. Hu and Z. Deng, Competition between geometric dispersion and viscous dissipation in wave propagation of KdV-Burgers equation, J. Vib. Control. 21 (2015), 2937-2945.; Hu, W.; Deng, Z., Competition between geometric dispersion and viscous dissipation in wave propagation of KdV-Burgers equation, J. Vib. Control., 21, 2937-2945 (2015)
[30] W. P. Hu, Z. C. Deng and T. T. Yin, Almost structure-preserving analysis for weakly linear damping nonlinear Schrodinger equation with periodic perturbation, Commun. Nonlinear Sci. Numer. Simul. 42 (2017), 298-312.; Hu, W. P.; Deng, Z. C.; Yin, T. T., Almost structure-preserving analysis for weakly linear damping nonlinear Schrodinger equation with periodic perturbation, Commun. Nonlinear Sci. Numer. Simul., 42, 298-312 (2017) · Zbl 1473.35507
[31] X. X. Xu, A deformed reduced Semi-Discrete Kaup-Newell equation, the related integrable family and Darboux transformation, Appl. Math. Comput. 251 (2015), 275-283.; Xu, X. X., A deformed reduced Semi-Discrete Kaup-Newell equation, the related integrable family and Darboux transformation, Appl. Math. Comput., 251, 275-283 (2015) · Zbl 1328.37054
[32] Q. L. Zhao, X. Y. Li and F. S. Liu, Two integrable Lattice Hierarchies and their respective Darboux transformations, Appl. Math. Comput. 219 (2013), 5693-5705.; Zhao, Q. L.; Li, X. Y.; Liu, F. S., Two integrable Lattice Hierarchies and their respective Darboux transformations, Appl. Math. Comput., 219, 5693-5705 (2013) · Zbl 1288.37023
[33] A. K. Gupta and S. S. Ray, On the solitary wave solution of fractional KudryashovSinelshchikov equation describing nonlinear wave processes in a liquid containing gas bubbles, Appl. Math. Comput. 298 (2017), 1-12.; Gupta, A. K.; Ray, S. S., On the solitary wave solution of fractional KudryashovSinelshchikov equation describing nonlinear wave processes in a liquid containing gas bubbles, Appl. Math. Comput., 298, 1-12 (2017) · Zbl 1411.35271
[34] J. B. Zhang and W. X. Ma, Mixed lump-kink solutions to the BKP equation, Comput. Math. Appl., 74 (2017), 591-596.; Zhang, J. B.; Ma, W. X., Mixed lump-kink solutions to the BKP equation, Comput. Math. Appl., 74, 591-596 (2017) · Zbl 1387.35540
[35] H. Q. Zhao and W. X. Ma, Mixed lump-kink solutions to the KP equation, Comput. Math. Appl. 74 (2017), 1399-1405.; Zhao, H. Q.; Ma, W. X., Mixed lump-kink solutions to the KP equation, Comput. Math. Appl., 74, 1399-1405 (2017) · Zbl 1394.35461
[36] S. Sahoo and S. S. Ray, Solitary wave solutions for time fractional third order modified KdV equation using two reliable techniques (G’/G)-expansion method and improved (G’/G)-expansion method, Physica A. 448 (2016), 265-282.; Sahoo, S.; Ray, S. S., Solitary wave solutions for time fractional third order modified KdV equation using two reliable techniques (G’/G)-expansion method and improved (G’/G)-expansion method, Physica A., 448, 265-282 (2016) · Zbl 1400.35204
[37] B. Zheng, (G’/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics, Physica A. 58 (2012), 623-630.; Zheng, B., (G’/G)-expansion method for solving fractional partial differential equations in the theory of mathematical physics, Physica A., 58, 623-630 (2012) · Zbl 1264.35273
[38] X. R. Guo, On bilinear representations and infinite conservation laws of a nonlinear Variable-Coefficient equation, Appl. Math. Comput. 248 (2014), 531-535.; Guo, X. R., On bilinear representations and infinite conservation laws of a nonlinear Variable-Coefficient equation, Appl. Math. Comput., 248, 531-535 (2014) · Zbl 1338.37085
[39] X. Y. Li, Y. Q. Zhang and Q. L. Zhao, Positive and negative integrable hierarchies, associated conservation laws and darboux transformation, J. Comput. Appl. Math. 233 (2009), 1096-1107.; Li, X. Y.; Zhang, Y. Q.; Zhao, Q. L., Positive and negative integrable hierarchies, associated conservation laws and darboux transformation, J. Comput. Appl. Math., 233, 1096-1107 (2009) · Zbl 1184.37055
[40] M. Khalique and G. Magalakwe, Combined sinh-cosh-Gordon equation: Symmetry reductions, exact solutions and conservation laws, Quaestiones Math. 37 (2014), 199-214.; Khalique, M.; Magalakwe, G., Combined sinh-cosh-Gordon equation: Symmetry reductions, exact solutions and conservation laws, Quaestiones Math., 37, 199-214 (2014) · Zbl 1397.35152
[41] S. Y. Lukashchuk, Conservation laws for time-fractional subdiffusion and diffusion-wave equations, Nonlinear Dyn. 80 (2015), 791-802.; Lukashchuk, S. Y., Conservation laws for time-fractional subdiffusion and diffusion-wave equations, Nonlinear Dyn., 80, 791-802 (2015) · Zbl 1345.35131
[42] K. Singla and R. K. Cupta, Space-time fractional nonlinear partial differential equations: Symmetry analysis and conservation laws, Nonlinear Dyn. 89 (2017), 321-331.; Singla, K.; Cupta, R. K., Space-time fractional nonlinear partial differential equations: Symmetry analysis and conservation laws, Nonlinear Dyn., 89, 321-331 (2017) · Zbl 1374.35429
[43] F. Lott and R. Plougonven, Gravity waves generated by sheared three-dimensional potential vorticity anomalies, J. Atmos. Sci. 69 (2012), 2134-2151.; Lott, F.; Plougonven, R., Gravity waves generated by sheared three-dimensional potential vorticity anomalies, J. Atmos. Sci., 69, 2134-2151 (2012)
[44] E. Noether, Invariante variations probleme, Gott. Nachr. 1918 (1918), 235-257.; Noether, E., Invariante variations probleme, Gott. Nachr., 1918, 235-257 (1918) · JFM 46.0770.01
[45] F. Riewe, Nonconservative lagrangian and hamiltonian mechanics, Phys. Rev. E. 53 (1996), 1890-1899.; Riewe, F., Nonconservative lagrangian and hamiltonian mechanics, Phys. Rev. E., 53, 1890-1899 (1996)
[46] O. P. Agrawal, Formulation of Euler Lagrange equations for fractional variational problems, J. Math. Anal. Appl. 272 (2002), 368-379.; Agrawal, O. P., Formulation of Euler Lagrange equations for fractional variational problems, J. Math. Anal. Appl., 272, 368-379 (2002) · Zbl 1070.49013
[47] G. S. F. Frederico and D. F. M. Torres, A formulation of noethers theorem for fractional problems of the calculus of variations, J. Math. Anal. Appl. 334 (2007), 834-846.; Frederico, G. S. F.; Torres, D. F. M., A formulation of noethers theorem for fractional problems of the calculus of variations, 334, 834-846 (2007) · Zbl 1119.49035
[48] A. B. Malinowska, A formulation of the fractional Noether type theorem for multidimensional Lagrangians, Appl. Math. Lett. 25 (2012), 1941-1946.; Malinowska, A. B., A formulation of the fractional Noether type theorem for multidimensional Lagrangians, Appl. Math. Lett., 25, 1941-1946 (2012) · Zbl 1259.49005
[49] G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dyn. 53 (2008), 215-222.; Frederico, G. S. F.; Torres, D. F. M., Fractional conservation laws in optimal control theory, Nonlinear Dyn., 53, 215-222 (2008) · Zbl 1170.49017
[50] W. Hu, M. Song, Z. Deng, T. Yin and B. Wei, Axial dynamic buckling analysis of embedded single-walled carbon nanotube by complex structure-preserving method, Appl. Math. Modell. 52 (2017), 15-27.; Hu, W.; Song, M.; Deng, Z.; Yin, T.; Wei, B., Axial dynamic buckling analysis of embedded single-walled carbon nanotube by complex structure-preserving method, Appl. Math. Modell., 52, 15-27 (2017) · Zbl 1480.74085
[51] W. P. Hu and Z. C. Deng, Chaos in embedded fluid-conveying single-walled carbon nanotube under transverse harmonic load series, Nonlinear Dyn. 79 (2015), 325-333.; Hu, W. P.; Deng, Z. C., Chaos in embedded fluid-conveying single-walled carbon nanotube under transverse harmonic load series, Nonlinear Dyn., 79, 325-333 (2015)
[52] W. Hu, M. Song, Z. Deng, H. Zou and B. Wei, Chaotic region of elastically restrained single-walled carbon nanotube, Chaos. 27 (2017), 023118.; Hu, W.; Song, M.; Deng, Z.; Zou, H.; Wei, B., Chaotic region of elastically restrained single-walled carbon nanotube, Chaos, 27, 023118 (2017)
[53] W. Hu, M. Song and Z. Deng, Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system, J. Sound Vib. 412 (2018), 58-73.; Hu, W.; Song, M.; Deng, Z., Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system, J. Sound Vib., 412, 58-73 (2018)
[54] G. W. Wang and A. H. Kara, Group analysis, fractional exact solution and conservation laws of the time fractional generalized Burgers equation, Commun. Theor. Phys. 69 (2018), 5-8.; Wang, G. W.; Kara, A. H., Group analysis, fractional exact solution and conservation laws of the time fractional generalized Burgers equation, Commun. Theor. Phys., 69, 5-8 (2018) · Zbl 1387.35609
[55] G. W. Wang, Symmetry analysis and rogue wave solutions for the(2+1)-dimensional nonlinear Schrödinger equation with variable coefficients, Appl. Math. Lett. 56 (2016), 56-64.; Wang, G. W., Symmetry analysis and rogue wave solutions for the(2+1)-dimensional nonlinear Schrödinger equation with variable coefficients, Appl. Math. Lett., 56, 56-64 (2016) · Zbl 1342.35357
[56] G. W. Wang, A. H. Kara, J. Vega-Guzman and A. Biswas, Group analysis, nonlinear self-adjointness, conservation laws and soliton solutions for the mKdV systems, Nonlinear Anal. Modell. Control. 22 (2017), 334-346.; Wang, G. W.; Kara, A. H.; Vega-Guzman, J.; Biswas, A., Group analysis, nonlinear self-adjointness, conservation laws and soliton solutions for the mKdV systems, Nonlinear Anal. Modell. Control., 22, 334-346 (2017) · Zbl 1421.35327
[57] J. Pedlosky, Geophysical fluid dynamics, Spring, New York, (1979).; Pedlosky, J., Geophysical fluid dynamics (1979) · Zbl 0429.76001
[58] B. J. Zhao, R. Y. Wang, W. J. Sun and H. W. Yang, Combined ZK-mZK equation for Rossby solitary waves with complete Coriolis force and its conservation laws as well as exact solutions, Adv. Differ. Equ. 2018 (2018), 42.; Zhao, B. J.; Wang, R. Y.; Sun, W. J.; Yang, H. W., Combined ZK-mZK equation for Rossby solitary waves with complete Coriolis force and its conservation laws as well as exact solutions, Adv. Differ. Equ., 2018, 42 (2018) · Zbl 1445.35280
[59] H. W. Yang, X. Chen, M. Guo and Y. D. Chen, A new ZK-BO equation for three-dimensional algebraic Rossby solitary waves and its solution as well as fission property, Nonlinear Dyn. 91 (2018), 2019-2032.; Yang, H. W.; Chen, X.; Guo, M.; Chen, Y. D., A new ZK-BO equation for three-dimensional algebraic Rossby solitary waves and its solution as well as fission property, Nonlinear Dyn., 91, 2019-2032 (2018) · Zbl 1390.76044
[60] M. Guo, Y. Zhang, M. Wang, Y. D. Chen and H. W. Yang, A new ZK-ILW equation for algebraic gravity solitary waves in finite depth stratified atmosphere and the research of squall lines formation mechanism, Comput. Math. Appl. 75 (2018), 3589-3603.; Guo, M.; Zhang, Y.; Wang, M.; Chen, Y. D.; Yang, H. W., A new ZK-ILW equation for algebraic gravity solitary waves in finite depth stratified atmosphere and the research of squall lines formation mechanism, Comput, 75, 3589-3603 (2018) · Zbl 1416.86008
[61] S. A. El-Wakil and E. M. Abulwafa, Formulation and solution of space-time fractional boussinesq equation, Nonlinear Dyn. 80 (2015), 167-175.; El-Wakil, S. A.; Abulwafa, E. M., Formulation and solution of space-time fractional boussinesq equation, 80, 167-175 (2015)
[62] S. Sahoo and S. S. Ray, Analysis of Lie symmetries with conservation laws for the (3+1) dimensional time-fractional mKdV-ZK equation in ion-acoustic waves, Nonlinear Dyn. 90 (2017), 1105-1113.; Sahoo, S.; Ray, S. S., Analysis of Lie symmetries with conservation laws for the (3+1) dimensional time-fractional mKdV-ZK equation in ion-acoustic waves, Nonlinear Dyn., 90, 1105-1113 (2017) · Zbl 1390.37115
[63] G. W. Wang, A. H. Kara and K. Fakhar, Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation, Nonlinear Dyn. 82 (2015), 281-287.; Wang, G. W.; Kara, A. H.; Fakhar, K., Symmetry analysis and conservation laws for the class of time-fractional nonlinear dispersive equation, Nonlinear Dyn., 82, 281-287 (2015) · Zbl 1348.35298
[64] V. Uchaikin and R. Sibatov, Fractional kinetics in solids: Anomalous charge transport in semiconductors, dielectrics and nanosystems, World Scientific, Singapore (2013).; Uchaikin, V.; Sibatov, R., Fractional kinetics in solids: Anomalous charge transport in semiconductors, dielectrics and nanosystems, World Scientific (2013) · Zbl 1277.82006
[65] O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A: Math. Theor. 40 (2007), 6287-6303.; Agrawal, O. P., Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A: Math. Theor., 40, 6287-6303 (2007) · Zbl 1125.26007
[66] O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dyn. 38 (2004), 323-337.; Agrawal, O. P., A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dyn., 38, 323-337 (2004) · Zbl 1121.70019
[67] O. P. Agrawal, Fractional variational calculus and the transversality conditions, J. Phys. A: Math. General. 39 (2006), 10375.; Agrawal, O. P., Fractional variational calculus and the transversality conditions, J. Phys. A: Math. General., 39, 10375 (2006) · Zbl 1097.49021
[68] N. H. Ibragimov, Nonlinear self-adjointness and conservation laws, J. Phys. A: Math. Theor. 44 (2011), 432002.; Ibragimov, N. H., Nonlinear self-adjointness and conservation laws, J. Phys. A: Math. Theor., 44, 432002 (2011) · Zbl 1270.35031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.