×

Definitions of vortex vector and vortex. (English) Zbl 1415.76102

Summary: Although the vortex is ubiquitous in nature, its definition is somewhat ambiguous in the field of fluid dynamics. In this absence of a rigorous mathematical definition, considerable confusion appears to exist in visualizing and understanding the coherent vortical structures in turbulence. Cited in the previous studies, a vortex cannot be fully described by vorticity, and vorticity should be further decomposed into a rotational and a non-rotational part to represent the rotation and the shear, respectively. In this paper, we introduce several new concepts, including local fluid rotation at a point and the direction of the local fluid rotation axis. The direction and the strength of local fluid rotation are examined by investigating the kinematics of the fluid element in two- and three-dimensional flows. A new vector quantity, which is called the vortex vector in this paper, is defined to describe the local fluid rotation and it is the rotational part of the vorticity. This can be understood as that the direction of the vortex vector is equivalent to the direction of the local fluid rotation axis, and the magnitude of vortex vector is the strength of the location fluid rotation. With these new revelations, a vortex is defined as a connected region where the vortex vector is not zero. In addition, through direct numerical simulation (DNS) and large eddy simulation (LES) examples, it is demonstrated that the newly defined vortex vector can fully describe the complex vertical structures of turbulence.

MSC:

76B47 Vortex flows for incompressible inviscid fluids
76D17 Viscous vortex flows
76M23 Vortex methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Adrian, R. J., Hairpin vortex organization in wall turbulence, Phys. Fluids, 19, (2007) · Zbl 1146.76307 · doi:10.1063/1.2717527
[2] Berdahl, C.; Thompson, D., Eduction of swirling structure using the velocity gradient tensor, AIAA J., 31, 97-103, (1993) · Zbl 0776.76043 · doi:10.2514/3.11324
[3] Chakraborty, P.; Balachandar, S.; Adrian, R. J., On the relationships between local vortex identification schemes, J. Fluid Mech., 535, 189-214, (2005) · Zbl 1071.76015 · doi:10.1017/S0022112005004726
[4] Chashechkin, Y. D.1993Visualization and identification of vortex structures in stratified wakes. In Eddy Structure Identification in Free Turbulent Shear Flows (ed. Bonnet, J. P. & Glauser, M. N.), , vol. 21, pp. 393-403. Springer. doi:10.1007/978-94-011-2098-2_32
[5] Chong, M.; Perry, A.; Cantwell, B., A general classification of three dimensional flow fields, Phys. Fluids A, 2, 765-777, (1990) · doi:10.1063/1.857730
[6] Dallmann, U.1983 Topological structures of three-dimensional flow separation. AIAA Paper 1983-1735.
[7] Elsas, J. H.; Moriconi, L., Vortex identification from local properties of the vorticity field, Phys. Fluids, 29, (2017) · doi:10.1063/1.4973243
[8] Epps, B. P.2017 Review of vortex identification methods. AIAA Paper 2017-0989.
[9] Gentle, J. E., Numerical Linear Algebra for Applications in Statistics, (1998), Springer · Zbl 0908.65015 · doi:10.1007/978-1-4612-0623-1
[10] Haller, G., An objective definition of a vortex, J. Fluid Mech., 525, 1-26, (2005) · Zbl 1065.76031 · doi:10.1017/S0022112004002526
[11] Haller, G., Lagrangian coherent structures, Annu. Rev. Fluid Mech., 47, 137-162, (2015) · doi:10.1146/annurev-fluid-010313-141322
[12] Haller, G., Dynamically consistent rotation and stretch tensors from a dynamic polar decomposition, J. Mech. Phys. Solids, 86, 70-93, (2016) · Zbl 1473.74003 · doi:10.1016/j.jmps.2015.10.002
[13] Haller, G.; Beron-Vera, F. J., Coherent lagrangian vortices: the black holes of turbulence, J. Fluid Mech., 731, R4, (2013) · Zbl 1294.76188 · doi:10.1017/jfm.2013.391
[14] Haller, G.; Hadjighasem, A.; Farazmand, M.; Huhn, F., Defining coherent vortices objectively from the vorticity, J. Fluid Mech., 795, 136-173, (2016) · Zbl 1359.76096 · doi:10.1017/jfm.2016.151
[15] Helmholtz, H., About integrals of hydrodynamic equations related with vortical motions, Phil. Mag., 33, 485-512, (1867) · doi:10.1080/14786446708639824
[16] Huang, Y.; Green, M. A., Detection and tracking of vortex phenomena using lagrangian coherent structures, Exp. Fluids, 56, 147, (2015) · doi:10.1007/s00348-015-2001-z
[17] Hunt, J. C., Wray, A. A. & Moin, P.1988Eddies, streams, and convergence zones in turbulent flows. In Center for Turbulence Research Proceedings of the Summer Program, vol. CTR‐S88, pp. 193-208.
[18] Jeong, J.; Hussain, F., On the identification of a vortex, J. Fluid Mech., 285, 69-94, (1995) · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[19] Karrasch, D.; Huhn, F.; Haller, G., Automated detection of coherent lagrangian vortices in two-dimensional unsteady flows, Proc. R. Soc. Lond., 471, (2014) · Zbl 1371.76044 · doi:10.1098/rspa.2014.0639
[20] Katz, A., Computational Rigid Vehicle Dynamics, (1996), Krieger Publishing Co
[21] Kolář, V., Vortex identification: New requirements and limitations, Intl J. Heat Fluid Flow, 28, 638-652, (2007) · doi:10.1016/j.ijheatfluidflow.2007.03.004
[22] Kolář, V. & Šístek, J.2014Recent progress in explicit shear-eliminating vortex identification. In Proceedings of 19th Australasian Fluid Mechanics Conference, Melbourne, Australia, December 8-11 (ed. Chowdhury, H. & Alam, F.), RMIT University, Article no. 274.
[23] Kolář, V.; Šístek, J., Corotational and compressibility aspects leading to a modification of the vortex-identification q-criterion, AIAA J., 53, 2406-2410, (2015) · doi:10.2514/1.J053697
[24] Kolář, V.; Šístek, J.; Cirak, F.; Moses, P., Average corotation of line segments near a point and vortex identification, AIAA J., 51, 2678-2694, (2013) · doi:10.2514/1.J052330
[25] Küchemann, D.; Weber, J., Report on the iutam symposium on concentrated vortex motions in fluids, J. Fluid Mech., 21, 1-20, (1965) · Zbl 0149.44401 · doi:10.1017/S0022112065000010
[26] Liu, C.; Wang, Y.; Yang, Y.; Duan, Z., New omega vortex identification method, Sci. China Phys., Mech. Astron., 59, (2016)
[27] Liu, C.; Yan, Y.; Lu, P., Physics of turbulence generation and sustenance in a boundary layer, Comput. Fluids, 102, 353-384, (2014) · doi:10.1016/j.compfluid.2014.06.032
[28] Lugt, H. J.1979The dilemma of defining a vortex. In Recent Developments in Theoretical and Experimental Fluid Mechanics (ed. Roesner, K. G., Müller, U. & Schmidt, B.), pp. 309-321. Springer. doi:10.1007/978-3-642-67220-0_32
[29] Murman, S. M., Aftosmis, M. J. & Berger, M. J.2003 Simulations of 6-dof motion with a cartesian method. AIAA Paper 2003-1246.
[30] Robinson, S. K.1990A review of vortex structures and associated coherent motions in turbulent boundary layers. In Structure of Turbulence and Drag Reduction. Springer.
[31] Robinson, S. K., Kline, S. J. & Spalart, P. R.1989 A review of quasi-coherent structures in a numerically simulated turbulent boundary layer. NASA Tech. Mem. 102191.
[32] Saffman, P. G., Vortex Dynamics, (1992), Cambridge University Press · Zbl 0777.76004
[33] Sayadi, T.; Hamman, C. W.; Moin, P., Direct numerical simulation of complete h-type and k-type transitions with implications for the dynamics of turbulent boundary layers, J. Fluid Mech., 724, 480-509, (2013) · Zbl 1287.76138 · doi:10.1017/jfm.2013.142
[34] Vollmers, H., Kreplin, H. P. & Meier, H. U.1983Separation and vortical-type flow around a prolate spheroid – evaluation of relevant parameters. In Proceedings of the AGARD Symposium on Aerodynamics of Vortical Type Flows in Three Dimensions, AGARD-CP-342.
[35] Wang, Y.; Yang, Y.; Yang, G.; Liu, C., Dns study on vortex and vorticity in late boundary layer transition, Commun. Comput. Phys., 22, 441-459, (2017) · Zbl 1488.76052 · doi:10.4208/cicp.OA-2016-0183
[36] Wu, J.; Xiong, A.; Yang, Y., Axial stretching and vortex definition, Phys. Fluids, 17, (2005) · Zbl 1187.76570
[37] Wu, J.; Yan, Y.; Zhou, M., Vorticity and Vortex Dynamics, (2006), Springer · doi:10.1007/978-3-540-29028-5
[38] Yang, Y.; Yan, Y.; Liu, C., Iles for mechanism of ramp-type mvg reducing shock induced flow separation, Sci. China-Phys. Mech. Astron., 59, (2016)
[39] Zhang, Y.; Liu, K.; Xian, H.; Du, X., A review of methods for vortex identification in hydroturbines, Renew. Sustain. Energy Rev., 81, 1269-1285, (2018) · doi:10.1016/j.rser.2017.05.058
[40] Zhou, J.; Adrian, R. J.; Balachandar, S.; Kendall, T. M., Mechanisms for generating coherent packets of hairpin vortices in channel flow, J. Fluid Mech., 387, 353-396, (1999) · Zbl 0946.76030 · doi:10.1017/S002211209900467X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.