×

Development of EEM based silicon-water and silica-water wall potentials for non-reactive molecular dynamics simulations. (English) Zbl 1349.76879

Summary: Molecular dynamics simulations of heat transfer in gases are computationally expensive when the wall molecules are explicitly modeled. To save computational time, an implicit boundary function is often used. Steele’s potential has been used in studies of fluid-solid interface for a long time. In this work, the conceptual idea of Steele’s potential was extended in order to simulate water-silicon and water-silica interfaces. A new wall potential model is developed by using the electronegativity-equalization method (EEM), a ReaxFF empirical force field and a non-reactive molecular dynamics package PumMa. Contact angle simulations were performed in order to validate the wall potential model. Contact angle simulations with the resulting tabulated wall potentials gave a silicon-water contact angle of 129\({\deg}\), a quartz-water contact angle of 0\({\deg}\), and a cristobalite-water contact angle of 40\({\deg}\), which are in reasonable agreement with experimental values.

MSC:

76V05 Reaction effects in flows
76M25 Other numerical methods (fluid mechanics) (MSC2010)
80A20 Heat and mass transfer, heat flow (MSC2010)

Software:

ReaxFF; PUMMA; dsmcFoam
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Moore, G. E., Cramming more components onto integrated circuits, Electronics, 38, 4 (1965)
[2] Docherty, S. Y.; Nicholls, W. D.; Borg, M. K.; Lockerby, D. A.; Reese, J. M., Boundary conditions for molecular dynamics simulations of water transfort through nanotubes, J. Mech. Eng. Sci. (2013)
[3] Thijsse, B. J.; Klaver, T. P.C.; Haddeman, E. F.C., Molecular dynamics simulation of silicon sputtering: sensitivity to the choice of potential, Appl. Surf. Sci., 231, 232, 29-38 (2004)
[4] Bird, G. A.; Mermin, N. D., Molecular Gas Dynamics and the Direct Simulations of Gas Flows (1994), Clarendon Press: Clarendon Press Oxford, UK
[5] Vargas, M.; Stefanov, S. K.; Roussinov, V., Transient heat transfer flow through a binary gaseous mixture confined between coaxial cylinders, Int. J. Heat Mass Transf., 59, 302-315 (2013)
[6] Scanlon, T. J.; Roohi, E.; White, C.; Darbandi, M.; Reese, J. M., An open source, parallel DSMC code for rarefied gas flows in arbitrary geometries, Comput. Fluids, 39, 10, 2078-2089 (2010) · Zbl 1245.76127
[7] Frezzotti, A., A particle scheme for the numerical solution of the Enskog equation, Phys. Fluids, 9, 1329-1335 (1997) · Zbl 1185.76835
[8] Cercignani, C.; Lampis, M., Kinetic model for gas-surface interaction, Transp. Theory Stat. Phys., 1, 101-114 (1971) · Zbl 0288.76041
[9] Lennard-Jones, J. E.; Devonshire, A., Critical phenomena in gases - I, Proc. R. Soc., 163, 53-70 (1937)
[10] Hove, J.; Krumhansl, J. A., The evaluation of lattice sums for cubic crystals, Phys. Rev., 92, 569-572 (1953) · Zbl 0051.22902
[11] Steele, W. A., The Interaction of Gases With Solid Surfaces (1974), Pergamon: Pergamon New York, USA
[12] Menegon, G.; Shimizu, K.; Farah, J. P.S.; Dias, L. G.; Chaimovich, H., Parametrerization of the electronegativity equalization method based on the charge model 1, Phys. Chem. Chem. Phys., 4, 5933-5936 (2002)
[13] Abraham, F. F., The interfacial density profile of a Lennard-Jones fluid in contact with a (100) Lennard-Jones wall and its relationship to idealized fluid/wall systems: a Monte Carlo simulation, J. Chem. Phys., 68, 3713-3716 (1978)
[14] Toxvaerd, S., The structure and thermodynamics of a solid-fluid interface, J. Chem. Phys., 74, 1998-2005 (1981)
[15] Bitsanis, I.; Magda, J. J.; Tirell, M.; Davis, H. T., Molecular dynamics of flow in micropores, J. Chem. Phys., 87, 1733-1750 (1987)
[16] Krishnan, S. H.; Ayappa, K. G., Modelling velocity autocorrelation function of confined fluids: a memory function approach, J. Chem. Phys., 118, 690-705 (2003)
[17] Spijker, P.; ten Eikelder, H. M.M.; Markvoort, A. J.; Nedea, S. V.; Hilbers, P. A.J., Implicit particle wall boundary condition in molecular dynamics, J. Mech. Eng. Sci., 222, 855-864 (2008)
[18] Siderius, D. W.; Gelb, L. D., Extension of the Steele 10-4-3 potential for adsorption calculations in cylindrical, spherical, and other pore geometries, J. Chem. Phys., 135, 084703 (2011)
[19] Wolff, D.; Rudd, W. G., Tabulated potentials in molecular dynamics simulation, Comput. Phys. Commun., 120, 20-32 (1999)
[20] Reed, J. L., Electronegativity and atomic charge, J. Chem. Educ., 69, 785-790 (1992)
[21] van Duin, A. C.T.; Dasgupta, S.; Lorant, F.; Goddard, W. A., ReaxFF: a reactive force field for hydrocarbons, J. Phys. Chem. A, 105, 9396 (2001)
[22] van Duin, A. C.T.; Strachan, A.; Stewman, S.; Zhang, Q.; Xu, X.; Goddard, W. A., ReaxFFSiO reactive force field for silicon and silicon oxide systems, J. Phys. Chem. A, 107, 3803 (2003)
[23] Fogarty, J. C.; Akulga, H. M.; Grama, A. Y.; van Duin, A. C.T.; Pandit, S. A., A reactive molecular dynamics simulation of the silica-water interface, J. Chem. Phys., 132, 174704 (2010)
[24] Ouyang, Y.; Ye, F.; Liang, Y., A modified electronegativity equalization method for fast and accurate calculation of atomic charges in large biological molecules, Phys. Chem. Chem. Phys., 11, 6082-6089 (2009)
[25] Ashcroft, N. W.; Mermin, N. D., Solid State Physics (1976), Holt, Rinehart and Winston: Holt, Rinehart and Winston New York · Zbl 1118.82001
[26] Will, G.; Bellotto, M.; Parrish, W.; Hart, M., Crystal structures of quartz and magnesium germanate by profile analysis of synchrotron-radiation high-resolution powder data, J. Appl. Crystallogr., 21, 181-191 (1988)
[27] Downs, R. T.; Palmer, D. C., The pressure behavior of alpha cristobalite P = room pressure, Am. Mineral., 79, 9-14 (1994)
[28] Maruyama, S.; Kurashige, T.; Matsumoto, S.; Yamaguchi, Y.; Kimura, T., Liquid droplet in contact with a solid surface, Nanoscale Microscale Thermophys. Eng., 2, 49-62 (1998)
[29] de Gennes, P. G., Wetting: Static and dynamics, Rev. Mod. Phys., 57, 827-863 (1985)
[31] Markvoort, A. J.; Hilbers, P. I.J.; Nedea, S. V., Molecular dynamics study of the influence of wall-gas interactions on heat flow in nanochannels, Phys. Rev. E, 71, 066702 (2005)
[32] Kim, J.; Frijns, A. J.H.; Nedea, S. V.; van Steenhoven, A. A.A., Geometry effects on rarefied nanochannel flows, Microfluid. Nanofluid., 15, 661-673 (2013)
[33] Iype, E.; Hütter, M.; Jansen, A. P.J.; Nedea, S. V.; Rindt, C. C.M., Parameterization of a reactive force field using a Monte Carlo algorithm, J. Comput. Chem., 34, 1143-1154 (2013)
[34] Price, W. S.; Ide, H.; Arata, Y., Self-diffusion of supercooled water to 238 K using PGSE NMR diffusion measurements, J. Phys. Chem. A, 103, 448 (1999)
[35] Mark, P.; Nilsson, L., Structure and dynamics of the TIP3P, SPC and SPC/E water models at 298 K, J. Phys. Chem. A, 105, 9954-9960 (2001)
[36] Shi, B.; Dhir, V. K., Molecular dynamics simulation of the contact angle of liquids on solid surfaces, J. Chem. Phys., 130, 034705 (2009)
[37] de Ruijter, M. J.; Blake, T. D.; de Coninck, J., Dynamic wetting studied by molecular modeling simulations of droplet spreading, Langmuir, 15, 7836-7847 (1999)
[38] Werder, T.; Walther, J. H.; Jaffe, R. L.; Halicioglu, T.; Koumoutsakos, P., On the water-carbon interaction for use in molecular dynamics simulations of graphite, J. Phys. Chem., 1345-1352 (2003)
[39] Barisik, M.; Beskok, A., Wetting characterisation of silicon \((1, 0, 0)\) surface, Mol. Simul., 39, 700-709 (2013)
[40] Arkles, B., Hydrophobicity, hydrophilicity and silanes, Paint Coat. Ind. Mag., 22, 10, 114-132 (October 2006)
[41] Kim, B. S.; Shin, S.; Shin, S. J.; Kim, K. M.; Cho, H. H., Micro-nano hybrid structures with manipulated wettability using a two-step silicon etching on a large area, Nanoscale Res. Lett., 6, 333-343 (2011)
[42] Aronov, D.; Rosenman, G.; Barkay, Z., Wettability study of modified silicon dioxide surface using environmental scanning electron microscopy, J. Appl. Phys., 101, 084901 (2007)
[43] Williams, R.; Goodman, A. M., Wetting on thin layers of \(SiO_2\) by water, Appl. Phys. Lett., 25, 531-532 (1974)
[44] Li, W.; Gu, T., Equilibrium contact angles as a function of the concentration of nonionic surfactants on quartz plate, Colloid Polym. Sci., 263, 1041-1043 (1985)
[45] Pashley, R. M.; Kitchener, J. A., Surface forces in adsorbed multilayers on water on quartz, J. Colloid Interface Sci., 71, 491-500 (1979)
[46] Kanta, A.; Sedev, R.; Ralston, J., Thermally- and photoinduced changes in the water wettability of low-surface-area silica and titania, Langmuir, 21, 2400-2407 (2005)
[47] Senn, B. C.; Pigram, P. J.; Liesegang, J., Surface elecrical resistivity and wettability study of fused silica, Surf. Interface Anal., 27, 835-839 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.