zbMATH — the first resource for mathematics

Two-layer geostrophic vortex dynamics. I: Upper-layer V-states and merger. (English) Zbl 0676.76093
Summary: We generalize the methods of two-dimensional contour dynamics to study a two-layer rotating fluid that obeys the quasi-geostrophic equations. We consider here only the case of a constant-potential-vorticity lower layer. We derive equilibrium solutions for monopolar (rotating) and dipolar (translating) geostrophic vortices in the upper layer, and compare them with the Euler case. We show that the equivalent barotropic (infinite lower layer) case is a singular limit of the two-layer system. We also investigate the effect of a finite lower layer on the merger of two regions of equal-sign potential vorticity in the upper layer. We discuss our results in the light of the recent laboratory experiments. The process of filamentation is found to be greatly suppressed for equivalent barotropic dynamics on scales larger than the radius of deformation. We show that the variation of the critical initial distance for merger as a function of the radius of deformation and the ratio of the layers at rest is closely related to the existence of vortex-pair equilibria and their geometrical properties.

76V05 Reaction effects in flows
76U05 General theory of rotating fluids
76B47 Vortex flows for incompressible inviscid fluids
76M99 Basic methods in fluid mechanics
Full Text: DOI
[1] DOI: 10.1017/S0022112080000559 · Zbl 0473.76034
[2] Phillips, Tellus 6 pp 273– (1954)
[3] DOI: 10.1038/328590a0
[4] Hogg, Proc. R. Soc. Lond. 397 pp 1– (1985)
[5] Gryanik, Izv. Akad. Nauk. SSSR Atmos. Ocean. Phys. 19 pp 171– (1983)
[6] DOI: 10.1017/S0022112087001125
[7] DOI: 10.1017/S0022112086001246
[8] DOI: 10.1016/0021-9991(88)90165-9 · Zbl 0642.76025
[9] DOI: 10.1017/S0022112085002324 · Zbl 0574.76026
[10] DOI: 10.1016/0021-9991(88)90054-X · Zbl 0649.76010
[11] DOI: 10.1016/0021-9991(79)90089-5 · Zbl 0405.76014
[12] DOI: 10.1103/PhysRevLett.40.859
[13] Young, Geophys. Astrophys. Fluid Dyn. 33 pp 42– (1985)
[14] DOI: 10.1016/0021-9991(84)90051-2 · Zbl 0524.76029
[15] DOI: 10.1017/S0022112082003309 · Zbl 0581.76025
[16] DOI: 10.1063/1.863907 · Zbl 0489.76033
[17] DOI: 10.1017/S0022112073001266 · Zbl 0254.76018
[18] DOI: 10.1017/S0022112086002744 · Zbl 0602.76026
[19] DOI: 10.1017/S0022112088002435 · Zbl 0653.76020
[20] DOI: 10.1063/1.866103
[21] DOI: 10.1017/S0022112087001150 · Zbl 0633.76023
[22] DOI: 10.1017/S0022112089000108
[23] DOI: 10.1017/S0022112084001750 · Zbl 0561.76059
[24] DOI: 10.1175/1520-0469(1988)045 2.0.CO;2
[25] DOI: 10.1063/1.862935
[26] DOI: 10.1017/S0022112082001578 · Zbl 0514.76017
[27] DOI: 10.1175/1520-0485(1986)016 2.0.CO;2
[28] DOI: 10.1016/0169-5983(88)90103-7
[29] DOI: 10.1063/1.857485
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.