zbMATH — the first resource for mathematics

Optimal control policy for a Brownian inventory system with concave ordering cost. (English) Zbl 1332.90029
Summary: In this paper we consider an inventory system with increasing concave ordering cost and average cost optimization criterion. The demand process is modeled as a Brownian motion. Porteus (1971) studied a discrete-time version of this problem and under the strong condition that the demand distribution belongs to the class of densities that are finite convolutions of uniform and/or exponential densities (note that normal density does not belong to this class), an optimal control policy is a generalized \((s, S)\) policy consisting of a sequence of \((s_{i}, S_{i})\). Using a lower bound approach, we show that an optimal control policy for the Brownian inventory model is determined by a single pair \((s, S)\).

90B05 Inventory, storage, reservoirs
90B30 Production models
Full Text: DOI Euclid
[1] Bather, J. A. (1966). A continuous time inventory model. J. Appl. Prob. 3, 538-549. · Zbl 0199.23202 · doi:10.2307/3212137
[2] Constantinides, G. M. and Richard, S. F. (1978). Existence of optimal simple policies for discounted-cost inventory and cash management in continuous time. Operat. Res. 26, 620-636. · Zbl 0385.90041 · doi:10.1287/opre.26.4.620
[3] Dai, J. G. and Yao, D. (2013). Brownian inventory models with convex holding cost, Part 1: Average-optimal controls. Stoch. Systems 3 , 442-499. · Zbl 1295.60096 · doi:10.1214/11-SSY041 · arxiv:1110.2831
[4] Dai, J. G. and Yao, D. (2013). Brownian inventory models with convex holding cost, Part 2: Discount-optimal controls. Stoch. Systems 3 , 500-573. · Zbl 1298.60084 · doi:10.1214/11-SSY046 · arxiv:1110.6572
[5] Dharmadhikari, S. and Joag-Dev, K. (1988). Unimodality, Convexity, and Applications . Academic Press, Boston, MA. · Zbl 0646.62008
[6] Harrison, J. M. (1985). Brownian Motion and Stochastic Flow Systems . John Wiley, New York. · Zbl 0659.60112
[7] Harrison, J. M. and Taylor, A. J. (1978). Optimal control of a Brownian storage system. Stoch. Process. Appl. 6, 179-194. · Zbl 0372.60116 · doi:10.1016/0304-4149(78)90059-5
[8] Harrison, J. M., Sellke, T. M. and Taylor, A. J. (1983). Impulse control of Brownian motion. Math. Operat. Res. 8, 454-466. · Zbl 0526.93066 · doi:10.1287/moor.8.3.454
[9] Hax, A. C. and Candea, D. (1984). Production and Inventory Management . Prentice-Hall, Englewood Cliffs, NJ.
[10] Heyman, D. P. and Sobel, M. J. (2004). Stochastic Models in Operations Research , Vol. I, Stochastic Processes and Operating Characteristics . Dover, Mineola, NY. · Zbl 0503.90031
[11] Ormeci, M., Dai, J. G. and Vande Vate, J. (2008). Impulse control of Brownian motion: the constrained average cost case. Operat. Res. 56, 618-629. · Zbl 1167.90349 · doi:10.1287/opre.1060.0380
[12] Porteus, E. L. (1971). On the optimality of generalized \((s,S)\) policies. Manag. Sci. 17, 411-426. · Zbl 0221.90011 · doi:10.1287/mnsc.17.7.411
[13] Porteus, E. L. (1972). On the optimality of generalized \((s,S)\) policies under uniform demand densities. Manag. Sci. 18, 644-646. · Zbl 0264.90015 · doi:10.1287/mnsc.18.11.644
[14] Richard, S. F. (1977). Optimal impulse control of a diffusion process with both fixed and proportional costs of control. SIAM J. Control Optimization 15 , 79-91. · Zbl 0352.93074 · doi:10.1137/0315007
[15] Scarf, H. (1960). The optimality of \((s,S)\) policies in the dynamic inventory problem. In Mathematical Methods in the Social Sciences, 1959 , Stanford University Press, pp. 196-202. · Zbl 0203.22102
[16] Sulem, A. (1986). A solvable one-dimensional model of a diffusion inventory system. Math. Operat. Res. 11, 125-133. · Zbl 0601.93069 · doi:10.1287/moor.11.1.125
[17] Wu, J. and Chao, X. (2014). Optimal control of a Brownian production/inventory system with average cost criterion. Math. Operat. Res. 39, 163-189. · Zbl 1311.49046 · doi:10.1287/moor.2013.0603
[18] Zheng, Y.-S. (1992). On properties of stochastic inventory systems. Manag. Sci. 38, 87-103. · Zbl 0764.90029 · doi:10.1287/mnsc.38.1.87
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.