Wei, Fenglun; Liu, Jianli; Yuan, Hairong Global stability to steady supersonic solutions of the 1-D compressible Euler equations with frictions. (English) Zbl 07315650 J. Math. Anal. Appl. 495, No. 2, Article ID 124761, 15 p. (2021). MSC: 35 76 PDF BibTeX XML Cite \textit{F. Wei} et al., J. Math. Anal. Appl. 495, No. 2, Article ID 124761, 15 p. (2021; Zbl 07315650) Full Text: DOI
Fan, Lili; Ruan, Lizhi; Xiang, Wei Asymptotic stability of viscous contact wave for the inflow problem of the one-dimensional radiative Euler equations. (English) Zbl 07314939 Discrete Contin. Dyn. Syst. 41, No. 4, 1971-1999 (2021). MSC: 35B35 35B40 35M30 35Q35 76N10 76N15 PDF BibTeX XML Cite \textit{L. Fan} et al., Discrete Contin. Dyn. Syst. 41, No. 4, 1971--1999 (2021; Zbl 07314939) Full Text: DOI
Santos, Ricardo; Alves, Leonardo A comparative analysis of explicit, IMEX and implicit strong stability preserving Runge-Kutta schemes. (English) Zbl 07310753 Appl. Numer. Math. 159, 204-220 (2021). MSC: 65M 65L 35K PDF BibTeX XML Cite \textit{R. Santos} and \textit{L. Alves}, Appl. Numer. Math. 159, 204--220 (2021; Zbl 07310753) Full Text: DOI
Akramov, Ibrokhimbek; Wiedemann, Emil Nonunique admissible weak solutions of the compressible Euler equations with compact support in space. (English) Zbl 07309968 SIAM J. Math. Anal. 53, No. 1, 795-812 (2021). MSC: 35Q31 35D30 35A02 PDF BibTeX XML Cite \textit{I. Akramov} and \textit{E. Wiedemann}, SIAM J. Math. Anal. 53, No. 1, 795--812 (2021; Zbl 07309968) Full Text: DOI
Peng, Yue-Jun Relaxed Euler systems and convergence to Navier-Stokes equations. (English) Zbl 07307586 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 369-401 (2021). MSC: 35L45 35L60 35L65 35Q30 35Q31 PDF BibTeX XML Cite \textit{Y.-J. Peng}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 38, No. 2, 369--401 (2021; Zbl 07307586) Full Text: DOI
Li, Haitong; Li, Jingyu; Mei, Ming; Zhang, Kaijun Optimal convergence rate to nonlinear diffusion waves for Euler equations with critical overdamping. (English) Zbl 07307162 Appl. Math. Lett. 113, Article ID 106882, 8 p. (2021). MSC: 35Q31 76N10 35B40 PDF BibTeX XML Cite \textit{H. Li} et al., Appl. Math. Lett. 113, Article ID 106882, 8 p. (2021; Zbl 07307162) Full Text: DOI
Wang, Xiaohui Compressible subsonic cavity flow in a nozzle. (English) Zbl 07306517 J. Math. Phys. 62, No. 1, 011505, 27 p. (2021). MSC: 76N10 76G25 35Q31 PDF BibTeX XML Cite \textit{X. Wang}, J. Math. Phys. 62, No. 1, 011505, 27 p. (2021; Zbl 07306517) Full Text: DOI
Pan, Xinghong Stability of smooth solutions for the compressible Euler equations with time-dependent damping and one-side physical vacuum. (English) Zbl 07303707 J. Differ. Equations 278, 146-188 (2021). MSC: 35A01 35Q31 35L67 35B20 35L70 35A20 35-02 PDF BibTeX XML Cite \textit{X. Pan}, J. Differ. Equations 278, 146--188 (2021; Zbl 07303707) Full Text: DOI
Mei, Ming; Wu, Xiaochun; Zhang, Yongqian Stability of steady-state for 3-D hydrodynamic model of unipolar semiconductor with ohmic contact boundary in hollow ball. (English) Zbl 07303695 J. Differ. Equations 277, 57-113 (2021). MSC: 82D37 35M30 35M33 76N10 35B40 35Q35 PDF BibTeX XML Cite \textit{M. Mei} et al., J. Differ. Equations 277, 57--113 (2021; Zbl 07303695) Full Text: DOI
Chen, Jinqiang; Yu, Peixiang; Ouyang, Hua; Tian, Zhen F. A novel parallel computing strategy for compact difference schemes with consistent accuracy and dispersion. (English) Zbl 07301283 J. Sci. Comput. 86, No. 1, Paper No. 5, 32 p. (2021). MSC: 65M06 65M15 65Y05 76N06 35Q31 PDF BibTeX XML Cite \textit{J. Chen} et al., J. Sci. Comput. 86, No. 1, Paper No. 5, 32 p. (2021; Zbl 07301283) Full Text: DOI
Zhang, Yu; Pang, Yicheng Concentration and cavitation in the vanishing pressure limit of solutions to a simplified isentropic relativistic Euler equations. (English) Zbl 07299344 J. Math. Fluid Mech. 23, No. 1, Paper No. 8, 19 p. (2021). MSC: 35Q31 35L65 35L67 76N10 76N15 76L05 76P05 76Y05 PDF BibTeX XML Cite \textit{Y. Zhang} and \textit{Y. Pang}, J. Math. Fluid Mech. 23, No. 1, Paper No. 8, 19 p. (2021; Zbl 07299344) Full Text: DOI
Chauchat, Nicolas; Becker, Roland; Schall, Eric Performance of DG methods based on different variables for low Mach number flows. (English) Zbl 07298996 Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105580, 21 p. (2021). MSC: 35Q31 76N06 65M60 65M06 65N30 65M08 PDF BibTeX XML Cite \textit{N. Chauchat} et al., Commun. Nonlinear Sci. Numer. Simul. 95, Article ID 105580, 21 p. (2021; Zbl 07298996) Full Text: DOI
Zeng, Huihui Almost global solutions to the three-dimensional isentropic inviscid flows with damping in a physical vacuum around Barenblatt solutions. (Almost global solutions to the three-dimensional isentropic inviscid flows with damping in a physical vacuum around Barenlatt solutions.) (English) Zbl 07298830 Arch. Ration. Mech. Anal. 239, No. 1, 553-597 (2021). MSC: 76N10 35Q31 PDF BibTeX XML Cite \textit{H. Zeng}, Arch. Ration. Mech. Anal. 239, No. 1, 553--597 (2021; Zbl 07298830) Full Text: DOI
Pan, Xinghong Global existence and convergence to the modified Barenblatt solution for the compressible Euler equations with physical vacuum and time-dependent damping. (English) Zbl 07296597 Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 5, 43 p. (2021). MSC: 35Q31 76N10 76S05 35B65 35A01 35R35 PDF BibTeX XML Cite \textit{X. Pan}, Calc. Var. Partial Differ. Equ. 60, No. 1, Paper No. 5, 43 p. (2021; Zbl 07296597) Full Text: DOI
Xu, Gang; Yin, Huicheng Three-dimensional global supersonic Euler flows in the infinitely long divergent nozzles. (English) Zbl 07293729 SIAM J. Math. Anal. 53, No. 1, 133-180 (2021). Reviewer: Gheorghe Moroşanu (Cluj-Napoca) MSC: 35Q31 35L70 35L65 35L67 76N15 35A01 35B35 76J20 PDF BibTeX XML Cite \textit{G. Xu} and \textit{H. Yin}, SIAM J. Math. Anal. 53, No. 1, 133--180 (2021; Zbl 07293729) Full Text: DOI
Ding, Min Non-relativistic limits of contact discontinuities to 1-d piston problem for the relativistic full Euler system. (English) Zbl 07289110 J. Differ. Equations 274, 510-542 (2021). MSC: 35Q31 76N10 76L05 76Y05 35B40 PDF BibTeX XML Cite \textit{M. Ding}, J. Differ. Equations 274, 510--542 (2021; Zbl 07289110) Full Text: DOI
Krupa, Sam G. Finite time stability for the Riemann problem with extremal shocks for a large class of hyperbolic systems. (English) Zbl 07289095 J. Differ. Equations 273, 122-171 (2021). MSC: 35L65 76N15 35L45 35A02 35B35 35D30 35L67 35Q31 76L05 35Q31 76N10 PDF BibTeX XML Cite \textit{S. G. Krupa}, J. Differ. Equations 273, 122--171 (2021; Zbl 07289095) Full Text: DOI
Chen, Zhengzheng; Wang, Di Global stability of rarefaction waves for the 1D compressible micropolar fluid model with density-dependent viscosity and microviscosity coefficients. (English) Zbl 07284918 Nonlinear Anal., Real World Appl. 58, Article ID 103226, 36 p. (2021). MSC: 35Q35 35Q31 76A05 76N10 35B35 35D35 PDF BibTeX XML Cite \textit{Z. Chen} and \textit{D. Wang}, Nonlinear Anal., Real World Appl. 58, Article ID 103226, 36 p. (2021; Zbl 07284918) Full Text: DOI
Shen, Chun The multiplication of distributions in the one-dimensional Eulerian droplet model. (English) Zbl 07281321 Appl. Math. Lett. 112, Article ID 106796, 8 p. (2021). MSC: 35Q31 76L05 76T10 76N10 35L67 PDF BibTeX XML Cite \textit{C. Shen}, Appl. Math. Lett. 112, Article ID 106796, 8 p. (2021; Zbl 07281321) Full Text: DOI
Lattanzio, Corrado; Zhelyazov, Delyan Traveling waves for quantum hydrodynamics with nonlinear viscosity. (English) Zbl 07265501 J. Math. Anal. Appl. 493, No. 1, Article ID 124503, 17 p. (2021). MSC: 76Y05 76L05 PDF BibTeX XML Cite \textit{C. Lattanzio} and \textit{D. Zhelyazov}, J. Math. Anal. Appl. 493, No. 1, Article ID 124503, 17 p. (2021; Zbl 07265501) Full Text: DOI
Tsuge, Naoki Global entropy solutions to the compressible Euler equations in the isentropic nozzle flow. (English) Zbl 07315518 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 666-673 (2020). MSC: 35L03 35L65 35Q31 76N10 76N15 35A01 35B35 35B50 35L60 76H05 76M20 PDF BibTeX XML Cite \textit{N. Tsuge}, AIMS Ser. Appl. Math. 10, 666--673 (2020; Zbl 07315518)
Pelanti, Marica A Roe-like reformulation of the HLLC Riemann solver and applications. (English) Zbl 07315510 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 594-602 (2020). MSC: 65M08 76N99 PDF BibTeX XML Cite \textit{M. Pelanti}, AIMS Ser. Appl. Math. 10, 594--602 (2020; Zbl 07315510)
Nedeljkov, Marko; Neumann, Lukas; Oberguggenberger, Michael Spherically symmetric shadow wave solutions to the compressible Euler system at the origin. (English) Zbl 07315508 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 577-585 (2020). MSC: 35L67 76N10 35F46 PDF BibTeX XML Cite \textit{M. Nedeljkov} et al., AIMS Ser. Appl. Math. 10, 577--585 (2020; Zbl 07315508)
Bae, Myoungjean; Xiang, Wei A note on 2-D detached shocks of steady Euler system. (English) Zbl 07315457 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 124-135 (2020). MSC: 35A01 35J25 35J62 35M10 35Q31 35R35 76H05 76L05 76N10 PDF BibTeX XML Cite \textit{M. Bae} and \textit{W. Xiang}, AIMS Ser. Appl. Math. 10, 124--135 (2020; Zbl 07315457)
Huang, Feimin The hydrodynamic limit of the Boltzmann equation for Riemann solutions. (English) Zbl 07315454 Bressan, Alberto (ed.) et al., Hyperbolic problems: theory, numerics, applications. Proceedings of the 17th international conference, HYP2018, Pennsylvania State University, University Park, PA, USA, June 25–29, 2018. Springfield, MO: American Institute of Mathematical Sciences (AIMS) (ISBN 978-1-60133-023-9). AIMS Series on Applied Mathematics 10, 76-97 (2020). MSC: 35Q35 35B65 76N10 PDF BibTeX XML Cite \textit{F. Huang}, AIMS Ser. Appl. Math. 10, 76--97 (2020; Zbl 07315454)
Sheng, Shouqiong; Shao, Zhiqiang The limits of Riemann solutions to Euler equations of compressible fluid flow with a source term. (English) Zbl 07300250 J. Eng. Math. 125, 1-22 (2020). MSC: 76L05 76N10 76M20 35Q31 PDF BibTeX XML Cite \textit{S. Sheng} and \textit{Z. Shao}, J. Eng. Math. 125, 1--22 (2020; Zbl 07300250) Full Text: DOI
Basarić, Danica Vanishing viscosity limit for the compressible Navier-Stokes system via measure-valued solutions. (English) Zbl 07296659 NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 6, Paper No. 57, 30 p. (2020). Reviewer: Piotr Biler (Wrocław) MSC: 76N10 35Q30 35Q31 35D99 PDF BibTeX XML Cite \textit{D. Basarić}, NoDEA, Nonlinear Differ. Equ. Appl. 27, No. 6, Paper No. 57, 30 p. (2020; Zbl 07296659) Full Text: DOI
Duan, Wenhui; Hu, Yanbo; Zhang, Qitao Self-similar solutions for full Euler equations. (English) Zbl 07295289 J. Hangzhou Norm. Univ., Nat. Sci. 19, No. 4, 415-420 (2020). MSC: 35C06 35Q31 35L67 76N10 PDF BibTeX XML Cite \textit{W. Duan} et al., J. Hangzhou Norm. Univ., Nat. Sci. 19, No. 4, 415--420 (2020; Zbl 07295289) Full Text: DOI
Carrillo, José Antonio; Peng, Yingping; Wróblewska-Kamińska, Aneta Relative entropy method for the relaxation limit of hydrodynamic models. (English) Zbl 07291683 Netw. Heterog. Media 15, No. 3, 369-387 (2020). MSC: 35Q31 76N06 35B25 35D30 35D35 PDF BibTeX XML Cite \textit{J. A. Carrillo} et al., Netw. Heterog. Media 15, No. 3, 369--387 (2020; Zbl 07291683) Full Text: DOI
Chen, Jianjun; Lai, Geng; Sheng, Wancheng On the rarefaction waves of the two-dimensional compressible Euler equations for magnetohydrodynamics. (English) Zbl 07291371 J. Hyperbolic Differ. Equ. 17, No. 3, 591-612 (2020). MSC: 35Q31 35L65 35L04 35L60 76N10 76W05 76P05 PDF BibTeX XML Cite \textit{J. Chen} et al., J. Hyperbolic Differ. Equ. 17, No. 3, 591--612 (2020; Zbl 07291371) Full Text: DOI
Secchi, Paolo Anisotropic regularity of linearized compressible vortex sheets. (English) Zbl 1451.35139 J. Hyperbolic Differ. Equ. 17, No. 3, 443-458 (2020). MSC: 35Q35 76N10 76E17 35L50 PDF BibTeX XML Cite \textit{P. Secchi}, J. Hyperbolic Differ. Equ. 17, No. 3, 443--458 (2020; Zbl 1451.35139) Full Text: DOI
Choi, Young-Pil; Lee, Jaeseung A hydrodynamic model for synchronization phenomena. (English) Zbl 1451.35208 Math. Models Methods Appl. Sci. 30, No. 11, 2175-2227 (2020). MSC: 35Q70 76N10 82C22 82C26 92B25 PDF BibTeX XML Cite \textit{Y.-P. Choi} and \textit{J. Lee}, Math. Models Methods Appl. Sci. 30, No. 11, 2175--2227 (2020; Zbl 1451.35208) Full Text: DOI
Li, Yeping; Zhu, Peicheng Zero-viscosity-capillarity limit toward rarefaction wave with vacuum for the Navier-Stokes-Korteweg equations of compressible fluids. (English) Zbl 07287302 J. Math. Phys. 61, No. 11, 111501, 20 p. (2020). MSC: 76N10 76N06 76L05 35Q30 35Q53 35L67 PDF BibTeX XML Cite \textit{Y. Li} and \textit{P. Zhu}, J. Math. Phys. 61, No. 11, 111501, 20 p. (2020; Zbl 07287302) Full Text: DOI
Luo, Tao; Wang, Yan-Lin Multi-scale nonlinear singular limit for thermal non-equilibrium gas flow with multiple non-equilibrium modes for analytic data in multi-dimensions with physical boundaries. (English) Zbl 07287263 J. Math. Phys. 61, No. 10, 101512, 16 p. (2020). MSC: 76N10 35Q31 80A17 PDF BibTeX XML Cite \textit{T. Luo} and \textit{Y.-L. Wang}, J. Math. Phys. 61, No. 10, 101512, 16 p. (2020; Zbl 07287263) Full Text: DOI
Ma, Lei; Xie, Chunjing Existence and optimal convergence rates of multi-dimensional subsonic potential flows through an infinitely long nozzle with an obstacle inside. (English) Zbl 07287157 J. Math. Phys. 61, No. 7, 071514, 23 p. (2020). MSC: 76G25 76N10 35Q31 PDF BibTeX XML Cite \textit{L. Ma} and \textit{C. Xie}, J. Math. Phys. 61, No. 7, 071514, 23 p. (2020; Zbl 07287157) Full Text: DOI
Jenssen, Helge Kristian; Tsikkou, Charis Amplitude blowup in radial isentropic Euler flow. (English) Zbl 07282658 SIAM J. Appl. Math. 80, No. 6, 2472-2495 (2020). Reviewer: Ilya A. Chernov (Petrozavodsk) MSC: 35B44 35L45 35L65 35L67 76N10 35Q31 PDF BibTeX XML Cite \textit{H. K. Jenssen} and \textit{C. Tsikkou}, SIAM J. Appl. Math. 80, No. 6, 2472--2495 (2020; Zbl 07282658) Full Text: DOI
Wu, Guochun; Zhang, Yinghui; Zhou, Lan Optimal large-time behavior of the two-phase fluid model in the whole space. (English) Zbl 07279621 SIAM J. Math. Anal. 52, No. 6, 5748-5774 (2020). MSC: 35Q30 35Q83 35Q84 35K65 35B40 35D35 76N10 14F40 PDF BibTeX XML Cite \textit{G. Wu} et al., SIAM J. Math. Anal. 52, No. 6, 5748--5774 (2020; Zbl 07279621) Full Text: DOI
Klingenberg, Christian; Kreml, Ondřej; Mácha, Václav; Markfelder, Simon Shocks make the Riemann problem for the full Euler system in multiple space dimensions ill-posed. (English) Zbl 1453.35143 Nonlinearity 33, No. 12, 6517-6540 (2020). MSC: 35Q31 35L65 35L67 76N10 76N15 35C06 35D30 35A02 35R25 PDF BibTeX XML Cite \textit{C. Klingenberg} et al., Nonlinearity 33, No. 12, 6517--6540 (2020; Zbl 1453.35143) Full Text: DOI
Colombo, Rinaldo M.; Garavello, Mauro On the 1D modeling of fluid flowing through a junction. (English) Zbl 1452.35138 Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3917-3929 (2020). MSC: 35Q31 35L65 76N06 35R02 PDF BibTeX XML Cite \textit{R. M. Colombo} and \textit{M. Garavello}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3917--3929 (2020; Zbl 1452.35138) Full Text: DOI
Breit, Dominic; Feireisl, Eduard; Hofmanová, Martina Generalized solutions to models of inviscid fluids. (English) Zbl 1452.35136 Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3831-3842 (2020). MSC: 35Q31 35D30 35A01 76N06 PDF BibTeX XML Cite \textit{D. Breit} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 10, 3831--3842 (2020; Zbl 1452.35136) Full Text: DOI
Xiang, Shuyang; Cao, Yangyang Global existence for a one-dimensional non-relativistic Euler model with relaxation. (English) Zbl 1452.35140 Port. Math. (N.S.) 77, No. 1, 45-71 (2020). MSC: 35Q31 35L60 65M08 76N10 35D30 76L05 35A01 PDF BibTeX XML Cite \textit{S. Xiang} and \textit{Y. Cao}, Port. Math. (N.S.) 77, No. 1, 45--71 (2020; Zbl 1452.35140) Full Text: DOI
Ma, Lei The optimal convergence rates of non-isentropic subsonic Euler flows through the infinitely long three-dimensional axisymmetric nozzles. (English) Zbl 1451.76109 Math. Methods Appl. Sci. 43, No. 10, 6553-6565 (2020). MSC: 76N10 76G25 35Q31 PDF BibTeX XML Cite \textit{L. Ma}, Math. Methods Appl. Sci. 43, No. 10, 6553--6565 (2020; Zbl 1451.76109) Full Text: DOI
Zhu, Yi Global existence of classical solutions for the 3D generalized compressible Oldroyd-B model. (English) Zbl 1451.35124 Math. Methods Appl. Sci. 43, No. 10, 6517-6528 (2020). MSC: 35Q31 76A10 76N10 35A01 35A09 PDF BibTeX XML Cite \textit{Y. Zhu}, Math. Methods Appl. Sci. 43, No. 10, 6517--6528 (2020; Zbl 1451.35124) Full Text: DOI
Zhang, Qingling; He, Fen The exact Riemann solutions to the generalized pressureless Euler equations with dissipation. (English) Zbl 1451.35091 Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4361-4374 (2020). MSC: 35L67 35L65 35Q31 35B30 76N10 PDF BibTeX XML Cite \textit{Q. Zhang} and \textit{F. He}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4361--4374 (2020; Zbl 1451.35091) Full Text: DOI
Gao, Junlei; Liu, Li; Yuan, Hairong On stability of transonic shocks for stationary Rayleigh flows in two-dimensional ducts. (English) Zbl 1453.35142 SIAM J. Math. Anal. 52, No. 5, 5287-5337 (2020). Reviewer: Alain Brillard (Riedisheim) MSC: 35Q31 35F60 35M32 35J56 76H05 76L05 76N10 35B35 PDF BibTeX XML Cite \textit{J. Gao} et al., SIAM J. Math. Anal. 52, No. 5, 5287--5337 (2020; Zbl 1453.35142) Full Text: DOI
Ho, Choryin; Yuen, Manwai Blowup for projected 2-dimensional \(C^2\) solutions of compressible Euler equations with Coriolis force. (English) Zbl 1451.35121 Nonlinear Anal., Real World Appl. 55, Article ID 103143, 9 p. (2020). MSC: 35Q31 35Q86 86A05 76N06 76U60 35B44 PDF BibTeX XML Cite \textit{C. Ho} and \textit{M. Yuen}, Nonlinear Anal., Real World Appl. 55, Article ID 103143, 9 p. (2020; Zbl 1451.35121) Full Text: DOI
Hu, Lijun; Zhai, Jian; Yuan, Li A two-dimensional flux splitting scheme for compressible flows. (Chinese. English summary) Zbl 07266458 Chin. J. Comput. Mech. 37, No. 2, 247-253 (2020). MSC: 65M08 76M12 PDF BibTeX XML Cite \textit{L. Hu} et al., Chin. J. Comput. Mech. 37, No. 2, 247--253 (2020; Zbl 07266458) Full Text: DOI
Feireisl, Eduard; Klingenberg, Christian; Markfelder, Simon On the density of “wild” initial data for the compressible Euler system. (English) Zbl 1448.76126 Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 152, 17 p. (2020). MSC: 76N10 35Q31 PDF BibTeX XML Cite \textit{E. Feireisl} et al., Calc. Var. Partial Differ. Equ. 59, No. 5, Paper No. 152, 17 p. (2020; Zbl 1448.76126) Full Text: DOI
Feireisl, Eduard; Hofmanová, Martina On convergence of approximate solutions to the compressible Euler system. (English) Zbl 1448.35375 Ann. PDE 6, No. 2, Paper No. 11, 24 p. (2020). MSC: 35Q31 76N10 35D30 35B40 PDF BibTeX XML Cite \textit{E. Feireisl} and \textit{M. Hofmanová}, Ann. PDE 6, No. 2, Paper No. 11, 24 p. (2020; Zbl 1448.35375) Full Text: DOI
Temple, Blake; Young, Robin Inversion of a non-uniform difference operator. (English) Zbl 07252763 Methods Appl. Anal. 27, No. 1, 65-86 (2020). MSC: 39A70 35B10 35L60 76N30 35Q31 PDF BibTeX XML Cite \textit{B. Temple} and \textit{R. Young}, Methods Appl. Anal. 27, No. 1, 65--86 (2020; Zbl 07252763) Full Text: DOI
Nečasová, Šárka; Tang, Tong On a singular limit for the compressible rotating Euler system. (English) Zbl 1448.35368 J. Math. Fluid Mech. 22, No. 3, Paper No. 43, 14 p. (2020). MSC: 35Q30 35Q86 76N06 76U60 76U65 76Q05 86A05 PDF BibTeX XML Cite \textit{Š. Nečasová} and \textit{T. Tang}, J. Math. Fluid Mech. 22, No. 3, Paper No. 43, 14 p. (2020; Zbl 1448.35368) Full Text: DOI
Ranocha, Hendrik; Dalcin, Lisandro; Parsani, Matteo Fully discrete explicit locally entropy-stable schemes for the compressible Euler and Navier-Stokes equations. (English) Zbl 07244266 Comput. Math. Appl. 80, No. 5, 1343-1359 (2020). MSC: 65J08 76N06 76N10 PDF BibTeX XML Cite \textit{H. Ranocha} et al., Comput. Math. Appl. 80, No. 5, 1343--1359 (2020; Zbl 07244266) Full Text: DOI
Feireisl, Eduard; Lukáčová-Medvid’ová, Mária; Mizerová, Hana Convergence of finite volume schemes for the Euler equations via dissipative measure-valued solutions. (English) Zbl 1447.65050 Found. Comput. Math. 20, No. 4, 923-966 (2020). MSC: 65M08 65M12 76N10 35L65 35R06 35Q31 PDF BibTeX XML Cite \textit{E. Feireisl} et al., Found. Comput. Math. 20, No. 4, 923--966 (2020; Zbl 1447.65050) Full Text: DOI
Luk, Jonathan; Speck, Jared The hidden null structure of the compressible Euler equations and a prelude to applications. (English) Zbl 1441.35190 J. Hyperbolic Differ. Equ. 17, No. 1, 1-60 (2020). MSC: 35Q31 35L05 35L10 35L15 35L67 35L72 76N10 PDF BibTeX XML Cite \textit{J. Luk} and \textit{J. Speck}, J. Hyperbolic Differ. Equ. 17, No. 1, 1--60 (2020; Zbl 1441.35190) Full Text: DOI
Dedner, Andreas; Klöfkorn, Robert A Python framework for solving advection-diffusion problems. (English) Zbl 07239654 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer (ISBN 978-3-030-43650-6/hbk; 978-3-030-43651-3/ebook). Springer Proceedings in Mathematics & Statistics 323, 695-703 (2020). Reviewer: Abdallah Bradji (Annaba) MSC: 65M08 65N30 65M20 65L06 76N30 35Q31 PDF BibTeX XML Cite \textit{A. Dedner} and \textit{R. Klöfkorn}, in: Finite volumes for complex applications IX -- methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15--19, 2020. In 2 volumes. Volume I and II. Cham: Springer. 695--703 (2020; Zbl 07239654) Full Text: DOI
Colas, Clement; Ferrand, Martin; Hérard, Jean-Marc; Hurisse, Olivier; Le Coupanec, Erwan; Quibel, Lucie A numerical convergence study of some open boundary conditions for Euler equations. (English) Zbl 07239650 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer (ISBN 978-3-030-43650-6/hbk; 978-3-030-43651-3/ebook). Springer Proceedings in Mathematics & Statistics 323, 655-663 (2020). MSC: 65M08 65N08 76N15 76L05 76N20 35Q31 PDF BibTeX XML Cite \textit{C. Colas} et al., in: Finite volumes for complex applications IX -- methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15--19, 2020. In 2 volumes. Volume I and II. Cham: Springer. 655--663 (2020; Zbl 07239650) Full Text: DOI
Ndjinga, Michaël; Ait-Ameur, Katia A new class of \(L^2\)-stable schemes for the isentropic Euler equations on staggered grids. (English) Zbl 07239627 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer (ISBN 978-3-030-43650-6/hbk; 978-3-030-43651-3/ebook). Springer Proceedings in Mathematics & Statistics 323, 425-433 (2020). MSC: 65M08 65M12 35L65 76N06 35Q35 PDF BibTeX XML Cite \textit{M. Ndjinga} and \textit{K. Ait-Ameur}, in: Finite volumes for complex applications IX -- methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15--19, 2020. In 2 volumes. Volume I and II. Cham: Springer. 425--433 (2020; Zbl 07239627) Full Text: DOI
Lukáčová-Medvid’ová, Mária \(\mathscr{K}\)-convergence of finite volume solutions of the Euler equations. (English) Zbl 07239590 Klöfkorn, Robert (ed.) et al., Finite volumes for complex applications IX – methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15–19, 2020. In 2 volumes. Volume I and II. Cham: Springer (ISBN 978-3-030-43650-6/hbk; 978-3-030-43651-3/ebook). Springer Proceedings in Mathematics & Statistics 323, 25-37 (2020). MSC: 65M08 65N08 65M12 76N10 76N15 35L65 35R06 35R25 35Q31 PDF BibTeX XML Cite \textit{M. Lukáčová-Medvid'ová}, in: Finite volumes for complex applications IX -- methods, theoretical aspects, examples. FVCA 9, Bergen, Norway, June 15--19, 2020. In 2 volumes. Volume I and II. Cham: Springer. 25--37 (2020; Zbl 07239590) Full Text: DOI
Ballew, Joshua Asymptotic analysis for a homogeneous bubbling regime Vlasov-Fokker-Planck/Navier-Stokes system. (English) Zbl 1446.35207 Z. Angew. Math. Phys. 71, No. 4, Paper No. 131, 22 p. (2020). MSC: 35Q83 35Q84 35Q30 35Q31 35B40 76N06 76T10 PDF BibTeX XML Cite \textit{J. Ballew}, Z. Angew. Math. Phys. 71, No. 4, Paper No. 131, 22 p. (2020; Zbl 1446.35207) Full Text: DOI
Zakharov, V. E. Integration of a deep fluid equation with a free surface. (English. Russian original) Zbl 1447.76005 Theor. Math. Phys. 202, No. 3, 285-294 (2020); translation from Teor. Mat. Fiz. 202, No. 3, 327-338 (2020). MSC: 76B07 76M40 76N99 35Q35 PDF BibTeX XML Cite \textit{V. E. Zakharov}, Theor. Math. Phys. 202, No. 3, 285--294 (2020; Zbl 1447.76005); translation from Teor. Mat. Fiz. 202, No. 3, 327--338 (2020) Full Text: DOI
Song, Yating; Guo, Lihui General limiting behavior of Riemann solutions to the non-isentropic Euler equations for modified Chaplygin gas. (English) Zbl 1447.76018 J. Math. Phys. 61, No. 4, 041506, 17 p. (2020). MSC: 76L05 76N10 35Q31 PDF BibTeX XML Cite \textit{Y. Song} and \textit{L. Guo}, J. Math. Phys. 61, No. 4, 041506, 17 p. (2020; Zbl 1447.76018) Full Text: DOI
Li, Min; Pu, Xueke; Wang, Shu Quasineutral limit for the compressible two-fluid Euler-Maxwell equations for well-prepared initial data. (English) Zbl 1446.35129 Electron Res. Arch. 28, No. 2, 879-895 (2020). MSC: 35Q35 35L60 35B40 35C20 76W05 76N10 35B25 35A01 PDF BibTeX XML Cite \textit{M. Li} et al., Electron Res. Arch. 28, No. 2, 879--895 (2020; Zbl 1446.35129) Full Text: DOI
Lespagnol, Fabien; Dakin, Gautier High order accurate schemes for Euler and Navier-Stokes equations on staggered Cartesian grids. (English) Zbl 1436.65124 J. Comput. Phys. 410, Article ID 109314, 17 p. (2020). MSC: 65M08 76N06 35Q31 76M12 PDF BibTeX XML Cite \textit{F. Lespagnol} and \textit{G. Dakin}, J. Comput. Phys. 410, Article ID 109314, 17 p. (2020; Zbl 1436.65124) Full Text: DOI
Gong, Guiqiong; Zhang, Lan Vanishing viscosity limit of the 2D micropolar equations for planar rarefaction wave to a Riemann problem. (English) Zbl 1442.35256 Z. Angew. Math. Phys. 71, No. 4, Paper No. 121, 27 p. (2020). MSC: 35L67 35B25 35L65 35Q31 76N10 PDF BibTeX XML Cite \textit{G. Gong} and \textit{L. Zhang}, Z. Angew. Math. Phys. 71, No. 4, Paper No. 121, 27 p. (2020; Zbl 1442.35256) Full Text: DOI
Schrecker, Matthew R. I.; Schulz, Simon Inviscid limit of the compressible Navier-Stokes equations for asymptotically isothermal gases. (English) Zbl 1442.35310 J. Differ. Equations 269, No. 10, 8640-8685 (2020). MSC: 35Q30 35L65 35L67 35Q31 35Q35 76N10 35C15 PDF BibTeX XML Cite \textit{M. R. I. Schrecker} and \textit{S. Schulz}, J. Differ. Equations 269, No. 10, 8640--8685 (2020; Zbl 1442.35310) Full Text: DOI
Chen, Liang; Mei, Ming; Zhang, Guojing; Zhang, Kaijun Steady hydrodynamic model of semiconductors with sonic boundary and transonic doping profile. (English) Zbl 07216749 J. Differ. Equations 269, No. 10, 8173-8211 (2020). MSC: 35R35 35Q35 76N10 35J70 PDF BibTeX XML Cite \textit{L. Chen} et al., J. Differ. Equations 269, No. 10, 8173--8211 (2020; Zbl 07216749) Full Text: DOI
Nguyen, Quoc-Hung; Nguyen, Phuoc-Tai; Tang, Bao Quoc Energy conservation for inhomogeneous incompressible and compressible Euler equations. (English) Zbl 1440.35257 J. Differ. Equations 269, No. 9, 7171-7210 (2020). MSC: 35Q31 76B03 76N10 35D30 35B65 PDF BibTeX XML Cite \textit{Q.-H. Nguyen} et al., J. Differ. Equations 269, No. 9, 7171--7210 (2020; Zbl 1440.35257) Full Text: DOI
Chen, Robin Ming; Hu, Jilong; Wang, Dehua; Wang, Tao; Yuan, Difan Nonlinear stability and existence of compressible vortex sheets in 2D elastodynamics. (English) Zbl 1442.35314 J. Differ. Equations 269, No. 9, 6899-6940 (2020). MSC: 35Q31 35Q35 76N15 76B47 76G25 35L65 35L67 74F10 74J40 74B99 35Q74 35R35 PDF BibTeX XML Cite \textit{R. M. Chen} et al., J. Differ. Equations 269, No. 9, 6899--6940 (2020; Zbl 1442.35314) Full Text: DOI
Deiterding, Ralf; Domingues, Margarete Oliveira; Schneider, Kai Multiresolution analysis as a criterion for effective dynamic mesh adaptation – a case study for Euler equations in the SAMR framework AMROC. (English) Zbl 07211851 Comput. Fluids 205, Article ID 104583, 19 p. (2020). MSC: 76 PDF BibTeX XML Cite \textit{R. Deiterding} et al., Comput. Fluids 205, Article ID 104583, 19 p. (2020; Zbl 07211851) Full Text: DOI
Wei, Ruiying; Li, Yin; Yao, Zheng-an Global existence and convergence rates of solutions for the compressible Euler equations with damping. (English) Zbl 1440.35279 Discrete Contin. Dyn. Syst., Ser. B 25, No. 8, 2949-2969 (2020). MSC: 35Q35 35B40 76P05 76N10 35A01 35A02 PDF BibTeX XML Cite \textit{R. Wei} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 8, 2949--2969 (2020; Zbl 1440.35279) Full Text: DOI
Breit, Dominic; Feireisl, Eduard; Hofmanová, Martina Dissipative solutions and semiflow selection for the complete Euler system. (English) Zbl 1441.35188 Commun. Math. Phys. 376, No. 2, 1471-1497 (2020). MSC: 35Q31 76N06 35D35 35B35 35A01 PDF BibTeX XML Cite \textit{D. Breit} et al., Commun. Math. Phys. 376, No. 2, 1471--1497 (2020; Zbl 1441.35188) Full Text: DOI
Morando, A.; Secchi, P.; Trebeschi, P. On the evolution equation of compressible vortex sheets. (English) Zbl 07206440 Math. Nachr. 293, No. 5, 945-969 (2020). MSC: 76 35 PDF BibTeX XML Cite \textit{A. Morando} et al., Math. Nachr. 293, No. 5, 945--969 (2020; Zbl 07206440) Full Text: DOI
Li, Lin-An; Wang, Dehua; Wang, Yi Vanishing viscosity limit to the planar rarefaction wave for the two-dimensional compressible Navier-Stokes equations. (English) Zbl 1439.35372 Commun. Math. Phys. 376, No. 1, 353-384 (2020). MSC: 35Q30 35Q31 76N30 35B65 PDF BibTeX XML Cite \textit{L.-A. Li} et al., Commun. Math. Phys. 376, No. 1, 353--384 (2020; Zbl 1439.35372) Full Text: DOI
Kuang, Jie; Zhao, Qin Global existence and stability of shock front solution to 1-D piston problem for exothermically reacting Euler equations. (English) Zbl 1434.35080 J. Math. Fluid Mech. 22, No. 2, Paper No. 22, 42 p. (2020). MSC: 35Q31 35B07 35B20 35D30 76J20 76L99 76N10 PDF BibTeX XML Cite \textit{J. Kuang} and \textit{Q. Zhao}, J. Math. Fluid Mech. 22, No. 2, Paper No. 22, 42 p. (2020; Zbl 1434.35080) Full Text: DOI
Gouasmi, Ayoub; Duraisamy, Karthik; Murman, Scott M.; Tadmor, Eitan A minimum entropy principle in the compressible multicomponent Euler equations. (English) Zbl 1434.76101 ESAIM, Math. Model. Numer. Anal. 54, No. 2, 373-389 (2020). MSC: 76N10 76N15 35Q31 35L65 65M12 PDF BibTeX XML Cite \textit{A. Gouasmi} et al., ESAIM, Math. Model. Numer. Anal. 54, No. 2, 373--389 (2020; Zbl 1434.76101) Full Text: DOI
Disconzi, Marcelo M.; Luo, Chenyun On the incompressible limit for the compressible free-boundary Euler equations with surface tension in the case of a liquid. (English) Zbl 1437.35556 Arch. Ration. Mech. Anal. 237, No. 2, 829-897 (2020). MSC: 35Q31 76N10 76B45 35R35 PDF BibTeX XML Cite \textit{M. M. Disconzi} and \textit{C. Luo}, Arch. Ration. Mech. Anal. 237, No. 2, 829--897 (2020; Zbl 1437.35556) Full Text: DOI
Cheng, Jianfeng; Du, Lili; Wang, Yongfu The uniqueness of the asymmetric jet flow. (English) Zbl 1434.35074 J. Differ. Equations 269, No. 4, 3794-3815 (2020). MSC: 35Q31 76A02 76N10 76B10 35J50 35R35 PDF BibTeX XML Cite \textit{J. Cheng} et al., J. Differ. Equations 269, No. 4, 3794--3815 (2020; Zbl 1434.35074) Full Text: DOI
Li, Xing; Li, Lin-An Vanishing viscosity limit to the planar rarefaction wave for the two-dimensional full compressible Navier-Stokes equations. (English) Zbl 07200723 J. Differ. Equations 269, No. 4, 3160-3195 (2020). Reviewer: Song Jiang (Beijing) MSC: 35Q35 76N10 35B40 76N17 PDF BibTeX XML Cite \textit{X. Li} and \textit{L.-A. Li}, J. Differ. Equations 269, No. 4, 3160--3195 (2020; Zbl 07200723) Full Text: DOI
Lee, Hsin-Yi; Chu, Jay; Hong, John M.; Lin, Ying-Chieh \(L^1\) convergences and convergence rates of approximate solutions for compressible Euler equations near vacuum. (English) Zbl 1434.35081 Res. Math. Sci. 7, No. 2, Paper No. 6, 31 p. (2020). MSC: 35Q31 35L45 35L65 35L67 35L81 PDF BibTeX XML Cite \textit{H.-Y. Lee} et al., Res. Math. Sci. 7, No. 2, Paper No. 6, 31 p. (2020; Zbl 1434.35081) Full Text: DOI
Coulombel, Jean-Francois; Williams, Mark On the Mach stem configuration with shallow angle. (English) Zbl 1437.35555 Indiana Univ. Math. J. 69, No. 1, 73-108 (2020). MSC: 35Q31 76L05 76N06 35B32 PDF BibTeX XML Cite \textit{J.-F. Coulombel} and \textit{M. Williams}, Indiana Univ. Math. J. 69, No. 1, 73--108 (2020; Zbl 1437.35555) Full Text: DOI
Schnücke, Gero; Krais, Nico; Bolemann, Thomas; Gassner, Gregor J. Entropy stable discontinuous Galerkin schemes on moving meshes for hyperbolic conservation laws. (English) Zbl 1437.65142 J. Sci. Comput. 82, No. 3, Paper No. 69, 42 p. (2020). MSC: 65M60 65M70 65N35 65L06 35L65 76N06 35Q31 PDF BibTeX XML Cite \textit{G. Schnücke} et al., J. Sci. Comput. 82, No. 3, Paper No. 69, 42 p. (2020; Zbl 1437.65142) Full Text: DOI
Ioriatti, Matteo; Dumbser, Michael; Loubère, Raphaël A staggered semi-implicit discontinuous Galerkin scheme with a posteriori subcell finite volume limiter for the Euler equations of gasdynamics. (English) Zbl 1434.76068 J. Sci. Comput. 83, No. 2, Paper No. 27, 58 p. (2020). MSC: 76M10 35Q31 76N10 PDF BibTeX XML Cite \textit{M. Ioriatti} et al., J. Sci. Comput. 83, No. 2, Paper No. 27, 58 p. (2020; Zbl 1434.76068) Full Text: DOI
Bouchut, François; Franck, Emmanuel; Navoret, Laurent A low cost semi-implicit low-Mach relaxation scheme for the full Euler equations. (English) Zbl 1434.76078 J. Sci. Comput. 83, No. 1, Paper No. 24, 47 p. (2020). MSC: 76M12 76M45 35Q31 76N10 PDF BibTeX XML Cite \textit{F. Bouchut} et al., J. Sci. Comput. 83, No. 1, Paper No. 24, 47 p. (2020; Zbl 1434.76078) Full Text: DOI
Feireisl, Eduard; Klingenberg, Christian; Kreml, Ondřej; Markfelder, Simon On oscillatory solutions to the complete Euler system. (English) Zbl 1437.35557 J. Differ. Equations 269, No. 2, 1521-1543 (2020). MSC: 35Q31 76N15 76L05 35R25 35R06 PDF BibTeX XML Cite \textit{E. Feireisl} et al., J. Differ. Equations 269, No. 2, 1521--1543 (2020; Zbl 1437.35557) Full Text: DOI
Godin, Paul On the breakdown of 2D compressible Eulerian flows in bounded impermeable regions with corners. (English. French summary) Zbl 1437.35559 J. Math. Pures Appl. (9) 137, 178-212 (2020). MSC: 35Q31 76N10 35L04 35L60 PDF BibTeX XML Cite \textit{P. Godin}, J. Math. Pures Appl. (9) 137, 178--212 (2020; Zbl 1437.35559) Full Text: DOI
Akramov, Ibrokhimbek; Dębiec, Tomasz; Skipper, Jack; Wiedemann, Emil Energy conservation for the compressible Euler and Navier-Stokes equations with vacuum. (English) Zbl 1437.35552 Anal. PDE 13, No. 3, 789-811 (2020). MSC: 35Q31 35Q30 35L65 76N10 35D30 35B65 PDF BibTeX XML Cite \textit{I. Akramov} et al., Anal. PDE 13, No. 3, 789--811 (2020; Zbl 1437.35552) Full Text: DOI
Al Baba, Hind; Klingenberg, Christian; Kreml, Ondřej; Mácha, Václav; Markfelder, Simon Nonuniqueness of admissible weak solution to the Riemann problem for the full Euler system in two dimensions. (English) Zbl 1437.35474 SIAM J. Math. Anal. 52, No. 2, 1729-1760 (2020). Reviewer: Y. Charles Li (Columbia) MSC: 35L65 35L67 35A02 35Q31 76N10 PDF BibTeX XML Cite \textit{H. Al Baba} et al., SIAM J. Math. Anal. 52, No. 2, 1729--1760 (2020; Zbl 1437.35474) Full Text: DOI
Qu, Aifang; Yuan, Hairong Radon measure solutions for steady compressible Euler equations of hypersonic-limit conical flows and Newton’s sine-squared law. (English) Zbl 07188423 J. Differ. Equations 269, No. 1, 495-522 (2020). Reviewer: Andrey Zahariev (Plovdiv) MSC: 76N10 76K05 35Q31 PDF BibTeX XML Cite \textit{A. Qu} and \textit{H. Yuan}, J. Differ. Equations 269, No. 1, 495--522 (2020; Zbl 07188423) Full Text: DOI
Chen, Gui-Qiang; Feldman, Mikhail; Hu, Jingchen; Xiang, Wei Loss of regularity of solutions of the Lighthill problem for shock diffraction for potential flow. (English) Zbl 1439.35327 SIAM J. Math. Anal. 52, No. 2, 1096-1114 (2020). Reviewer: Ilya A. Chernov (Petrozavodsk) MSC: 35L67 35B65 35L65 35Q31 35J70 76H05 76N10 76L05 PDF BibTeX XML Cite \textit{G.-Q. Chen} et al., SIAM J. Math. Anal. 52, No. 2, 1096--1114 (2020; Zbl 1439.35327) Full Text: DOI
Li, Mingjie; Wang, Tian-Yi; Xiang, Wei Low Mach number limit of multidimensional steady flows on the airfoil problem. (English) Zbl 1439.35385 Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 68, 21 p. (2020). MSC: 35Q31 35L65 76N15 35B40 35A15 76B10 PDF BibTeX XML Cite \textit{M. Li} et al., Calc. Var. Partial Differ. Equ. 59, No. 2, Paper No. 68, 21 p. (2020; Zbl 1439.35385) Full Text: DOI
Chen, Robin Ming; Hu, Jilong; Wang, Dehua Linear stability of compressible vortex sheets in 2D elastodynamics: variable coefficients. (English) Zbl 1440.35254 Math. Ann. 376, No. 3-4, 863-912 (2020). MSC: 35Q31 35Q35 74F10 76E17 76N15 76G25 76B47 35B35 35R35 PDF BibTeX XML Cite \textit{R. M. Chen} et al., Math. Ann. 376, No. 3--4, 863--912 (2020; Zbl 1440.35254) Full Text: DOI
Chu, Jay; Hong, John M.; Lee, Hsin-Yi Approximation and existence of vacuum states in the multiscale flows of compressible Euler equations. (English) Zbl 1439.35380 Multiscale Model. Simul. 18, No. 1, 104-130 (2020). MSC: 35Q31 35L45 35L65 35L67 35L81 76N10 35D30 35C20 35B33 PDF BibTeX XML Cite \textit{J. Chu} et al., Multiscale Model. Simul. 18, No. 1, 104--130 (2020; Zbl 1439.35380) Full Text: DOI
Breit, Dominic; Feireisl, Eduard; Hofmanová, Martina On solvability and ill-posedness of the compressible Euler system subject to stochastic forces. (English) Zbl 1435.35289 Anal. PDE 13, No. 2, 371-402 (2020). MSC: 35Q31 35D30 60H15 76N06 35R60 35R25 PDF BibTeX XML Cite \textit{D. Breit} et al., Anal. PDE 13, No. 2, 371--402 (2020; Zbl 1435.35289) Full Text: DOI
Mohan, Manil T.; Sritharan, Sivaguru S. Frequency truncation method for quasilinear symmetrizable hyperbolic systems. (English) Zbl 1435.35240 J. Anal. 28, No. 1, 117-140 (2020). MSC: 35L60 35L90 35L45 35Q31 49J20 PDF BibTeX XML Cite \textit{M. T. Mohan} and \textit{S. S. Sritharan}, J. Anal. 28, No. 1, 117--140 (2020; Zbl 1435.35240) Full Text: DOI
Jiang, Peng Global existence and large time behavior of classical solutions to the Euler-Maxwell-Vlasov-Fokker-Planck system. (English) Zbl 1435.35384 J. Differ. Equations 268, No. 12, 7715-7740 (2020). MSC: 35Q83 35Q84 35Q31 35Q61 35A01 41A25 76W05 35B40 35A09 76N10 76T99 PDF BibTeX XML Cite \textit{P. Jiang}, J. Differ. Equations 268, No. 12, 7715--7740 (2020; Zbl 1435.35384) Full Text: DOI
Ranocha, Hendrik; Sayyari, Mohammed; Dalcin, Lisandro; Parsani, Matteo; Ketcheson, David I. Relaxation Runge-Kutta methods: fully discrete explicit entropy-stable schemes for the compressible Euler and Navier-Stokes equations. (English) Zbl 1432.76207 SIAM J. Sci. Comput. 42, No. 2, A612-A638 (2020). MSC: 76M99 65M22 65L06 35Q30 35Q31 76N10 PDF BibTeX XML Cite \textit{H. Ranocha} et al., SIAM J. Sci. Comput. 42, No. 2, A612--A638 (2020; Zbl 1432.76207) Full Text: DOI
Hu, Yanbo; Liu, Jiajia Spherically symmetric solutions of the full compressible Euler equations in \(\mathbb R^N\). (English) Zbl 1439.35384 Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1373-1390 (2020). MSC: 35Q31 35L45 35L65 76N10 76L05 35D30 35B06 35C06 PDF BibTeX XML Cite \textit{Y. Hu} and \textit{J. Liu}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1373--1390 (2020; Zbl 1439.35384) Full Text: DOI
Ginsberg, Daniel; Lindblad, Hans; Luo, Chenyun Local well-posedness for the motion of a compressible, self-gravitating liquid with free surface boundary. (English) Zbl 1439.35383 Arch. Ration. Mech. Anal. 236, No. 2, 603-733 (2020). MSC: 35Q31 76N10 76B03 76B15 35R35 PDF BibTeX XML Cite \textit{D. Ginsberg} et al., Arch. Ration. Mech. Anal. 236, No. 2, 603--733 (2020; Zbl 1439.35383) Full Text: DOI
Castro, Manuel J.; Parés, Carlos Well-balanced high-order finite volume methods for systems of balance laws. (English) Zbl 1440.65109 J. Sci. Comput. 82, No. 2, Paper No. 48, 48 p. (2020). MSC: 65M08 76M12 76N06 76B15 35Q31 35D30 PDF BibTeX XML Cite \textit{M. J. Castro} and \textit{C. Parés}, J. Sci. Comput. 82, No. 2, Paper No. 48, 48 p. (2020; Zbl 1440.65109) Full Text: DOI
Arun, K. R.; Samantaray, S. Asymptotic preserving low Mach number accurate IMEX finite volume schemes for the isentropic Euler equations. (English) Zbl 1434.76077 J. Sci. Comput. 82, No. 2, Paper No. 35, 32 p. (2020). Reviewer: Victor Michel-Dansac (Toulouse) MSC: 76M12 76M20 35Q31 65M06 35L45 35L60 35L65 35L67 65M08 76N10 PDF BibTeX XML Cite \textit{K. R. Arun} and \textit{S. Samantaray}, J. Sci. Comput. 82, No. 2, Paper No. 35, 32 p. (2020; Zbl 1434.76077) Full Text: DOI