Huang, Ya; Liu, Juan; Zhou, Jieming; Deng, Yingchun Gerber-Shiu analysis for a discrete risk model with delayed claims and random incomes. (English) Zbl 1449.62236 Chin. J. Eng. Math. 37, No. 1, 89-106 (2020). MSC: 62P05 91B05 PDF BibTeX XML Cite \textit{Y. Huang} et al., Chin. J. Eng. Math. 37, No. 1, 89--106 (2020; Zbl 1449.62236) Full Text: DOI
Constantinescu, Corina D.; Kozubowski, Tomasz J.; Qian, Haoyu H. Probability of ruin in discrete insurance risk model with dependent Pareto claims. (English) Zbl 1439.62214 Depend. Model. 7, 215-233 (2019). MSC: 62P05 91B05 62E15 62G32 PDF BibTeX XML Cite \textit{C. D. Constantinescu} et al., Depend. Model. 7, 215--233 (2019; Zbl 1439.62214) Full Text: DOI
Avram, Florin; Vidmar, Matija First passage problems for upwards skip-free random walks via the scale functions paradigm. (English) Zbl 1427.60077 Adv. Appl. Probab. 51, No. 2, 408-424 (2019). MSC: 60G50 60G51 PDF BibTeX XML Cite \textit{F. Avram} and \textit{M. Vidmar}, Adv. Appl. Probab. 51, No. 2, 408--424 (2019; Zbl 1427.60077) Full Text: DOI
Liu, Haiyan; Yang, Chen; Chen, Mi Randomized dividends in a discrete time risk model. (Chinese. English summary) Zbl 1424.91057 J. Fujian Norm. Univ., Nat. Sci. 34, No. 5, 1-5 (2018). MSC: 91B30 62P05 PDF BibTeX XML Cite \textit{H. Liu} et al., J. Fujian Norm. Univ., Nat. Sci. 34, No. 5, 1--5 (2018; Zbl 1424.91057) Full Text: DOI
Drekic, Steve; Woo, Jae-Kyung; Xu, Ran A threshold-based risk process with a waiting period to pay dividends. (English) Zbl 1412.60064 J. Ind. Manag. Optim. 14, No. 3, 1179-1201 (2018). MSC: 60G50 60K05 91B30 62P05 PDF BibTeX XML Cite \textit{S. Drekic} et al., J. Ind. Manag. Optim. 14, No. 3, 1179--1201 (2018; Zbl 1412.60064) Full Text: DOI
Sun, Xin; Duan, Yu; Jin, Jin Large deviations for a multi-risk model with compound binomial distribution. (Chinese. English summary) Zbl 1413.60016 Math. Pract. Theory 48, No. 6, 271-276 (2018). MSC: 60F10 91B30 PDF BibTeX XML Cite \textit{X. Sun} et al., Math. Pract. Theory 48, No. 6, 271--276 (2018; Zbl 1413.60016)
Reis, Matthias; Kromer, Justus A.; Klipp, Edda General solution of the chemical master equation and modality of marginal distributions for hierarchic first-order reaction networks. (English) Zbl 1397.92784 J. Math. Biol. 77, No. 2, 377-419 (2018). MSC: 92E20 62E10 34A30 PDF BibTeX XML Cite \textit{M. Reis} et al., J. Math. Biol. 77, No. 2, 377--419 (2018; Zbl 1397.92784) Full Text: DOI
Eryilmaz, Serkan On the first time of ruin in two-dimensional discrete time risk model with dependent claim occurrences. (English) Zbl 1390.91180 Commun. Stat., Theory Methods 47, No. 9, 2251-2258 (2018). MSC: 91B30 60G09 PDF BibTeX XML Cite \textit{S. Eryilmaz}, Commun. Stat., Theory Methods 47, No. 9, 2251--2258 (2018; Zbl 1390.91180) Full Text: DOI
Tan, Jiyang; Ma, Yuhui; Zhang, Hanjun; Li, Ziqiang; Yang, Xiangqun Optimal control strategies for dividend payments and capital injections in compound Markov binomial risk model with penalties for deficits. (English) Zbl 1377.91176 Commun. Stat., Theory Methods 46, No. 10, 5072-5092 (2017). MSC: 91G80 91B30 60J20 93E20 PDF BibTeX XML Cite \textit{J. Tan} et al., Commun. Stat., Theory Methods 46, No. 10, 5072--5092 (2017; Zbl 1377.91176) Full Text: DOI
Eryilmaz, Serkan; Gebizlioglu, Omer L. Computing finite time non-ruin probability and some joint distributions in discrete time risk model with exchangeable claim occurrences. (English) Zbl 1353.62113 J. Comput. Appl. Math. 313, 235-242 (2017). MSC: 62P05 91B30 60J20 PDF BibTeX XML Cite \textit{S. Eryilmaz} and \textit{O. L. Gebizlioglu}, J. Comput. Appl. Math. 313, 235--242 (2017; Zbl 1353.62113) Full Text: DOI
Tuncel, Altan Survival probabilities for compound binomial risk model with discrete phase-type claims. (English) Zbl 1372.91055 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 65, No. 2, 11-22 (2016). MSC: 91B30 62P05 PDF BibTeX XML Cite \textit{A. Tuncel}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 65, No. 2, 11--22 (2016; Zbl 1372.91055) Full Text: DOI
Hanagal, David D.; Dabade, Alok D. Comparison of shared frailty models for kidney infection data under exponential power baseline distribution. (English) Zbl 1337.62338 Commun. Stat., Theory Methods 44, No. 23, 5091-5108 (2015). MSC: 62P10 62F15 62N01 PDF BibTeX XML Cite \textit{D. D. Hanagal} and \textit{A. D. Dabade}, Commun. Stat., Theory Methods 44, No. 23, 5091--5108 (2015; Zbl 1337.62338) Full Text: DOI
Xie, Jie-Hua; Gao, Jian-Wei; Zou, Wei On a risk model with delayed claims under stochastic interest rates. (English) Zbl 1334.91042 Commun. Stat., Theory Methods 44, No. 14, 3022-3041 (2015). MSC: 91B30 62P05 PDF BibTeX XML Cite \textit{J.-H. Xie} et al., Commun. Stat., Theory Methods 44, No. 14, 3022--3041 (2015; Zbl 1334.91042) Full Text: DOI
Zhang, Shuaiqi; Liu, Guoxin; Sun, Meici Ruin probability in the continuous-time compound binomial model with investment. (English) Zbl 1340.91067 Acta Math. Sci., Ser. B, Engl. Ed. 35, No. 2, 313-325 (2015). MSC: 91B30 62P05 60G44 PDF BibTeX XML Cite \textit{S. Zhang} et al., Acta Math. Sci., Ser. B, Engl. Ed. 35, No. 2, 313--325 (2015; Zbl 1340.91067) Full Text: DOI
Li, Jin-Zhu; Wu, Rong The Gerber-Shiu discounted penalty function for a compound binomial risk model with by-claims. (English) Zbl 1310.91078 Acta Math. Appl. Sin., Engl. Ser. 31, No. 1, 181-190 (2015). MSC: 91B30 62P05 PDF BibTeX XML Cite \textit{J.-Z. Li} and \textit{R. Wu}, Acta Math. Appl. Sin., Engl. Ser. 31, No. 1, 181--190 (2015; Zbl 1310.91078) Full Text: DOI
Hanagal, David D.; Dabade, Alok D. Comparisons of frailty models for kidney infection data under Weibull baseline distribution. (English) Zbl 1317.92051 Int. J. Math. Model. Numer. Optim. 5, No. 4, 342-373 (2014). MSC: 92C60 92C50 PDF BibTeX XML Cite \textit{D. D. Hanagal} and \textit{A. D. Dabade}, Int. J. Math. Model. Numer. Optim. 5, No. 4, 342--373 (2014; Zbl 1317.92051) Full Text: DOI
Tan, Ji-Yang; Yang, Xiang-Qun Optimal dividend strategy in compound binomial model with bounded dividend rates. (English) Zbl 1302.60108 Acta Math. Appl. Sin., Engl. Ser. 30, No. 4, 859-870 (2014). MSC: 60J25 91B30 PDF BibTeX XML Cite \textit{J.-Y. Tan} and \textit{X.-Q. Yang}, Acta Math. Appl. Sin., Engl. Ser. 30, No. 4, 859--870 (2014; Zbl 1302.60108) Full Text: DOI
Tuncel, Altan; Tank, Fatih Computational results on the compound binomial risk model with nonhomogeneous claim occurrences. (English) Zbl 1291.91131 J. Comput. Appl. Math. 263, 69-77 (2014). MSC: 91B30 PDF BibTeX XML Cite \textit{A. Tuncel} and \textit{F. Tank}, J. Comput. Appl. Math. 263, 69--77 (2014; Zbl 1291.91131) Full Text: DOI
Eryilmaz, Serkan On distributions of runs in the compound binomial risk model. (English) Zbl 1284.62638 Methodol. Comput. Appl. Probab. 16, No. 1, 149-159 (2014). MSC: 62P05 91B30 62E15 65C60 PDF BibTeX XML Cite \textit{S. Eryilmaz}, Methodol. Comput. Appl. Probab. 16, No. 1, 149--159 (2014; Zbl 1284.62638) Full Text: DOI
Zhou, Jieming; Mo, Xiaoyun; Ou, Hui; Yang, Xiangqun Expected present value of total dividends in a compound binomial model with delayed claims and random income. (English) Zbl 1313.60138 Acta Math. Sci., Ser. B, Engl. Ed. 33, No. 6, 1639-1651 (2013). MSC: 60J27 60J28 62P05 91B30 PDF BibTeX XML Cite \textit{J. Zhou} et al., Acta Math. Sci., Ser. B, Engl. Ed. 33, No. 6, 1639--1651 (2013; Zbl 1313.60138) Full Text: DOI
Xie, Jiehua; Zou, Wei On the expected present value of total dividends in a risk model with potentially delayed claims. (English) Zbl 1299.91077 Commun. Math. Res. 29, No. 3, 193-202 (2013). MSC: 91B30 62P05 PDF BibTeX XML Cite \textit{J. Xie} and \textit{W. Zou}, Commun. Math. Res. 29, No. 3, 193--202 (2013; Zbl 1299.91077)
Hanagal, David D.; Dabade, Alok D. Compound negative binomial shared frailty models for bivariate survival data. (English) Zbl 06265524 Stat. Probab. Lett. 83, No. 11, 2507-2515 (2013). MSC: 62N05 62J05 62P10 PDF BibTeX XML Cite \textit{D. D. Hanagal} and \textit{A. D. Dabade}, Stat. Probab. Lett. 83, No. 11, 2507--2515 (2013; Zbl 06265524) Full Text: DOI
Li, Shuanming; Huang, Fengjing; Jin, Can Joint distributions of some ruin related quantities in the compound binomial risk model. (English) Zbl 1282.91158 Stoch. Models 29, No. 4, 518-539 (2013). Reviewer: Emilia Di Lorenzo (Napoli) MSC: 91B30 62P05 60K05 PDF BibTeX XML Cite \textit{S. Li} et al., Stoch. Models 29, No. 4, 518--539 (2013; Zbl 1282.91158) Full Text: DOI
Xiao, Lin; Ou, Hui; Yang, Xiangqun Establishment and construction of compound binomial risk model in Markov-chain environment. (Chinese. English summary) Zbl 1289.93012 J. Syst. Sci. Math. Sci. 33, No. 3, 255-263 (2013). MSC: 93A30 91B30 60K30 60J10 PDF BibTeX XML Cite \textit{L. Xiao} et al., J. Syst. Sci. Math. Sci. 33, No. 3, 255--263 (2013; Zbl 1289.93012)
Li, Shuanming; Sendova, Kristina P. The finite-time ruin probability under the compound binomial risk model. (English) Zbl 1277.91090 Eur. Actuar. J. 3, No. 1, 249-271 (2013). Reviewer: Pavel Stoynov (Sofia) MSC: 91B30 60G51 PDF BibTeX XML Cite \textit{S. Li} and \textit{K. P. Sendova}, Eur. Actuar. J. 3, No. 1, 249--271 (2013; Zbl 1277.91090) Full Text: DOI
Yuen, Kam Chuen; Li, Jinzhu; Wu, Rong On a discrete-time risk model with delayed claims and dividends. (English) Zbl 1263.91054 Risk Decis. Anal. 4, No. 1, 3-16 (2013). MSC: 91G70 91G40 62P05 PDF BibTeX XML Cite \textit{K. C. Yuen} et al., Risk Decis. Anal. 4, No. 1, 3--16 (2013; Zbl 1263.91054) Full Text: DOI
Bao, Zhenhua; Wang, Jing On the compound binomial risk model with stochastic income. (English) Zbl 1297.62215 Int. J. Pure Appl. Math. 82, No. 3, 377-390 (2013). MSC: 62P05 91B30 PDF BibTeX XML Cite \textit{Z. Bao} and \textit{J. Wang}, Int. J. Pure Appl. Math. 82, No. 3, 377--390 (2013; Zbl 1297.62215) Full Text: Link
Eryilmaz, Serkan; Tuncel, Altan; Tank, Fatih On the extremes of surplus process in compound binomial model. (English) Zbl 1274.60213 Selçuk J. Appl. Math. 13, No. 2, 69-78 (2012). Reviewer: Tomáš Cipra (Praha) MSC: 60H30 91B30 62P05 PDF BibTeX XML Cite \textit{S. Eryilmaz} et al., Selçuk J. Appl. Math. 13, No. 2, 69--78 (2012; Zbl 1274.60213)
Xiao, Lin; Yang, Xiangqun Conditional probability calculations of the compound binomial risk model in Markov-chain environment. (Chinese. English summary) Zbl 1265.60189 Appl. Math., Ser. A (Chin. Ed.) 27, No. 1, 43-49 (2012). MSC: 60K30 91B30 PDF BibTeX XML Cite \textit{L. Xiao} and \textit{X. Yang}, Appl. Math., Ser. A (Chin. Ed.) 27, No. 1, 43--49 (2012; Zbl 1265.60189)
Tan, Jiyang; Yang, Xiangqun The compound binomial model with a constant dividend barrier and periodically paid dividends. (English) Zbl 1259.91070 J. Syst. Sci. Complex. 25, No. 1, 167-177 (2012). MSC: 91B64 93E03 PDF BibTeX XML Cite \textit{J. Tan} and \textit{X. Yang}, J. Syst. Sci. Complex. 25, No. 1, 167--177 (2012; Zbl 1259.91070) Full Text: DOI
Bao, Zhenhua; Liu, He On the discounted factorial moments of the deficit in the discrete time renewal risk model. (English) Zbl 1446.62263 Int. J. Pure Appl. Math. 79, No. 2, 329-342 (2012). MSC: 62P05 60K10 91B05 PDF BibTeX XML Cite \textit{Z. Bao} and \textit{H. Liu}, Int. J. Pure Appl. Math. 79, No. 2, 329--342 (2012; Zbl 1446.62263) Full Text: Link
Fang, Shizu; Zhang, Chunmei; Zhao, Peichen; Sun, Xin The Gerber-Shiu discounted penalty function in the compound Markov binomial model. (English) Zbl 1265.91084 Chin. J. Appl. Probab. Stat. 27, No. 5, 460-472 (2011). MSC: 91B30 60J20 PDF BibTeX XML Cite \textit{S. Fang} et al., Chin. J. Appl. Probab. Stat. 27, No. 5, 460--472 (2011; Zbl 1265.91084)
Yu, Yibin; Zhang, Lixin; Zhang, Yi Joint and supremum distributions in the compound binomial model with Markovian environment. (English) Zbl 1249.91061 Appl. Math., Ser. B (Engl. Ed.) 26, No. 3, 265-279 (2011). MSC: 91B30 62P05 PDF BibTeX XML Cite \textit{Y. Yu} et al., Appl. Math., Ser. B (Engl. Ed.) 26, No. 3, 265--279 (2011; Zbl 1249.91061) Full Text: DOI
Geng, Xian-Min; Wan, Shu-Chen Ruin probability and joint distributions of some actuarial random vectors in the compound Pascal model. (English) Zbl 1211.91149 Acta Math. Appl. Sin., Engl. Ser. 27, No. 1, 63-74 (2011). Reviewer: Nikolaos Halidias (Athens) MSC: 91B30 60H10 60H30 60G35 PDF BibTeX XML Cite \textit{X.-M. Geng} and \textit{S.-C. Wan}, Acta Math. Appl. Sin., Engl. Ser. 27, No. 1, 63--74 (2011; Zbl 1211.91149) Full Text: DOI
He, Lei; Yang, Xiangqun The compound binomial model with randomly paying dividends to shareholders and policyholders. (English) Zbl 1231.91197 Insur. Math. Econ. 46, No. 3, 443-449 (2010). MSC: 91B30 60K30 PDF BibTeX XML Cite \textit{L. He} and \textit{X. Yang}, Insur. Math. Econ. 46, No. 3, 443--449 (2010; Zbl 1231.91197) Full Text: DOI
Xie, Jie-Hua; Zou, Wei Expected present value of total dividends in a delayed claims risk model under stochastic interest rates. (English) Zbl 1231.91460 Insur. Math. Econ. 46, No. 2, 415-422 (2010). MSC: 91G30 91B30 PDF BibTeX XML Cite \textit{J.-H. Xie} and \textit{W. Zou}, Insur. Math. Econ. 46, No. 2, 415--422 (2010; Zbl 1231.91460) Full Text: DOI
Tan, Jiyang; Yang, Xiangqun The Gerber-Shiu penalty function for the compound binomial model with general premium rate. (Chinese. English summary) Zbl 1240.91066 J. Syst. Sci. Math. Sci. 30, No. 8, 1102-1110 (2010). MSC: 91B30 62P05 PDF BibTeX XML Cite \textit{J. Tan} and \textit{X. Yang}, J. Syst. Sci. Math. Sci. 30, No. 8, 1102--1110 (2010; Zbl 1240.91066)
Zhao, Jinyan; Liu, Guoxin Joint distributions of some actuarial random vectors in the continuous-time compound binomial model. (Chinese. English summary) Zbl 1240.91090 Acta Math. Sci., Ser. A, Chin. Ed. 30, No. 3, 677-693 (2010). MSC: 91B30 60K10 62P05 PDF BibTeX XML Cite \textit{J. Zhao} and \textit{G. Liu}, Acta Math. Sci., Ser. A, Chin. Ed. 30, No. 3, 677--693 (2010; Zbl 1240.91090)
Gerhold, Stefan; Schmock, Uwe; Warnung, Richard A generalization of Panjer’s recursion and numerically stable risk aggregation. (English) Zbl 1224.91060 Finance Stoch. 14, No. 1, 81-128 (2010). Reviewer: Georgij M. Shevchenko (Kyïv) MSC: 91B30 91G40 91G60 PDF BibTeX XML Cite \textit{S. Gerhold} et al., Finance Stoch. 14, No. 1, 81--128 (2010; Zbl 1224.91060) Full Text: DOI
Kong, Fanchao; Zhao, Peng Some large deviation results for generalized compound binomial risk models. (English) Zbl 1212.60028 J. Math. Res. Expo. 29, No. 6, 1047-1053 (2009). MSC: 60F10 62P05 91B30 PDF BibTeX XML Cite \textit{F. Kong} and \textit{P. Zhao}, J. Math. Res. Expo. 29, No. 6, 1047--1053 (2009; Zbl 1212.60028) Full Text: DOI
Li, Shuanming; Lu, Yi; Garrido, José A review of discrete-time risk models. (English) Zbl 1180.62151 RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 103, No. 2, 321-337 (2009). MSC: 62P05 91B30 60J20 60K99 PDF BibTeX XML Cite \textit{S. Li} et al., RACSAM, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 103, No. 2, 321--337 (2009; Zbl 1180.62151) Full Text: DOI EuDML
Ladriault, David On a generalization of the expected discounted penalty function in a discrete-time insurance risk model. (English) Zbl 1199.91084 Appl. Stoch. Models Bus. Ind. 24, No. 6, 525-539 (2008). Reviewer: A. D. Borisenko (Kyïv) MSC: 91B30 60J20 PDF BibTeX XML Cite \textit{D. Ladriault}, Appl. Stoch. Models Bus. Ind. 24, No. 6, 525--539 (2008; Zbl 1199.91084) Full Text: DOI
Yu, Meifang; Zhang, Chunsheng; Zhang, Huayue Two probability distributions under the compound Markov binomial model. (Chinese. English summary) Zbl 1199.91114 Acta Sci. Nat. Univ. Nankaiensis 41, No. 4, 66-72 (2008). MSC: 91B30 60J20 62P05 PDF BibTeX XML Cite \textit{M. Yu} et al., Acta Sci. Nat. Univ. Nankaiensis 41, No. 4, 66--72 (2008; Zbl 1199.91114)
Ma, Jianjing; Xing, Yongsheng Ruin probability of compound negative binomial risk model. (Chinese. English summary) Zbl 1199.91092 Acta Sci. Nat. Univ. Nankaiensis 41, No. 1, 110-112 (2008). MSC: 91B30 62P05 PDF BibTeX XML Cite \textit{J. Ma} and \textit{Y. Xing}, Acta Sci. Nat. Univ. Nankaiensis 41, No. 1, 110--112 (2008; Zbl 1199.91092)
Ma, Xuemin; Hu, Yejun Finite time ruin probability and precise large deviations for a customer-based compound binomial risk model. (Chinese. English summary) Zbl 1174.60015 Acta Math. Sin., Chin. Ser. 51, No. 6, 1119-1130 (2008). MSC: 60F99 91B30 62P05 PDF BibTeX XML Cite \textit{X. Ma} and \textit{Y. Hu}, Acta Math. Sin., Chin. Ser. 51, No. 6, 1119--1130 (2008; Zbl 1174.60015)
Lefèvre, Claude; Stéphane, Loisel On finite-time ruin probabilities for classical risk models. (English) Zbl 1164.91033 Scand. Actuar. J. 2008, No. 1, 41-60 (2008). Reviewer: Aleksandr D. Borisenko (Kyïv) MSC: 91B30 PDF BibTeX XML Cite \textit{C. Lefèvre} and \textit{L. Stéphane}, Scand. Actuar. J. 2008, No. 1, 41--60 (2008; Zbl 1164.91033) Full Text: DOI
Landriault, David Randomized dividends in the compound binomial model with a general premium rate. (English) Zbl 1164.91032 Scand. Actuar. J. 2008, No. 1, 1-15 (2008). Reviewer: Aleksandr D. Borisenko (Kyïv) MSC: 91B30 PDF BibTeX XML Cite \textit{D. Landriault}, Scand. Actuar. J. 2008, No. 1, 1--15 (2008; Zbl 1164.91032) Full Text: DOI
Bao, Zhen-Hua A note on the compound binomial model with randomized dividend strategy. (English) Zbl 1193.91062 Appl. Math. Comput. 194, No. 1, 276-286 (2007). MSC: 91B30 60K05 PDF BibTeX XML Cite \textit{Z.-H. Bao}, Appl. Math. Comput. 194, No. 1, 276--286 (2007; Zbl 1193.91062) Full Text: DOI
Xia, Yafeng; Zhou, Xiaoxing; Sun, Nailing The application of martingale in ruin probability of the compound negative binomial risk model. (English) Zbl 1145.91359 Gao, Hongwei (ed.) et al., Proceedings of the second international conference on game theory and applications, Qingdao, China, September 17–19, 2007. Liverpool: World Academic Union (World Academic Press) (ISBN 978-1-84626-166-4/hbk). 209-213 (2007). MSC: 91B30 60G40 PDF BibTeX XML Cite \textit{Y. Xia} et al., in: Proceedings of the second international conference on game theory and applications, Qingdao, China, September 17--19, 2007. Liverpool: World Academic Union (World Academic Press). 209--213 (2007; Zbl 1145.91359)
Xiao, Yuntao; Guo, Junyi The compound binomial risk model with time-correlated claims. (English) Zbl 1119.91059 Insur. Math. Econ. 41, No. 1, 124-133 (2007). MSC: 91B30 PDF BibTeX XML Cite \textit{Y. Xiao} and \textit{J. Guo}, Insur. Math. Econ. 41, No. 1, 124--133 (2007; Zbl 1119.91059) Full Text: DOI
Yuen, Kam-Chuen; Guo, Junyi Some results on the compound Markov binomial model. (English) Zbl 1144.91036 Scand. Actuar. J. 2006, No. 3, 129-140 (2006). Reviewer: Aleksandr D. Borisenko (Kyïv) MSC: 91B70 60K15 60G40 PDF BibTeX XML Cite \textit{K.-C. Yuen} and \textit{J. Guo}, Scand. Actuar. J. 2006, No. 3, 129--140 (2006; Zbl 1144.91036) Full Text: DOI
Liu, S. X.; Guo, J. Y. Discrete risk model revisited. (English) Zbl 1098.91074 Methodol. Comput. Appl. Probab. 8, No. 2, 303-313 (2006). MSC: 91B30 62P05 PDF BibTeX XML Cite \textit{S. X. Liu} and \textit{J. Y. Guo}, Methodol. Comput. Appl. Probab. 8, No. 2, 303--313 (2006; Zbl 1098.91074) Full Text: DOI
Lee, Youngjo; Nelder, John A.; Pawitan, Yudi Generalized linear models with random effects: unified analysis via \(h\)-likelihood. With CD-ROM. (English) Zbl 1110.62092 Monographs on Statistics and Applied Probability 106. Boca Raton, FL: Chapman & Hall/CRC (ISBN 1-58488-631-5/hbk; 978-1-4200-1134-0/ebook). x, 396 p. (2006). Reviewer: Yuehua Wu (Toronto) MSC: 62J12 62-02 62Pxx PDF BibTeX XML Cite \textit{Y. Lee} et al., Generalized linear models with random effects: unified analysis via \(h\)-likelihood. With CD-ROM. Boca Raton, FL: Chapman \& Hall/CRC (2006; Zbl 1110.62092) Full Text: DOI
Liu, Guoxin; Wang, Ying; Zhang, Bei Ruin probability in the continuous-time compound binomial model. (English) Zbl 1110.62146 Insur. Math. Econ. 36, No. 3, 303-316 (2005). MSC: 62P05 91B30 60G35 60G44 PDF BibTeX XML Cite \textit{G. Liu} et al., Insur. Math. Econ. 36, No. 3, 303--316 (2005; Zbl 1110.62146) Full Text: DOI
Cossette, Hélène; Landriault, David; Marceau, Étienne Exact expressions and upper bound for ruin probabilities in the compound Markov binomial model. (English) Zbl 1188.91086 Insur. Math. Econ. 34, No. 3, 449-466 (2004). MSC: 91B30 62P05 60E05 60J10 60J20 62E10 PDF BibTeX XML Cite \textit{H. Cossette} et al., Insur. Math. Econ. 34, No. 3, 449--466 (2004; Zbl 1188.91086) Full Text: DOI
Cossette, Hélène; Landriault, David; Marceau, Étienne Compound binomial risk model in a Markovian environment. (English) Zbl 1079.91049 Insur. Math. Econ. 35, No. 2, 425-443 (2004). MSC: 91B30 PDF BibTeX XML Cite \textit{H. Cossette} et al., Insur. Math. Econ. 35, No. 2, 425--443 (2004; Zbl 1079.91049) Full Text: DOI
Pavlova, Kristina P.; Willmot, Gordon E. The discrete stationary renewal risk model and the Gerber-Shiu discounted penalty function. (English) Zbl 1103.91046 Insur. Math. Econ. 35, No. 2, 267-277 (2004). Reviewer: Vangelis Grigoroudis (Chania) MSC: 91B30 PDF BibTeX XML Cite \textit{K. P. Pavlova} and \textit{G. E. Willmot}, Insur. Math. Econ. 35, No. 2, 267--277 (2004; Zbl 1103.91046) Full Text: DOI
Cossette, Hélène; Landriault, David; Marceau, Étienne Ruin probabilities in the compound Markov binomial model. (English) Zbl 1092.91040 Scand. Actuar. J. 2003, No. 4, 301-323 (2003). Reviewer: A. D. Borisenko(Kyïv) MSC: 91B30 60J20 60J10 PDF BibTeX XML Cite \textit{H. Cossette} et al., Scand. Actuar. J. 2003, No. 4, 301--323 (2003; Zbl 1092.91040) Full Text: DOI
Qiao, Kelin; Li, Jinzhi; He, Shuhong The survival probabilities in finite time period in fully discrete binomial risk model. (Chinese. English summary) Zbl 1052.62108 J. Yunnan Univ., Nat. Sci. 25, No. 5, 386-390 (2003). MSC: 62P05 91B30 62N99 PDF BibTeX XML Cite \textit{K. Qiao} et al., J. Yunnan Univ., Nat. Sci. 25, No. 5, 386--390 (2003; Zbl 1052.62108)
Leipus, Remigijus; Viano, Marie-Claude Long memory and stochastic trend. (English) Zbl 1101.62371 Stat. Probab. Lett. 61, No. 2, 177-190 (2003). MSC: 62M10 91B70 60G51 PDF BibTeX XML Cite \textit{R. Leipus} and \textit{M.-C. Viano}, Stat. Probab. Lett. 61, No. 2, 177--190 (2003; Zbl 1101.62371) Full Text: DOI
Gong, Rizhao; Yang, Xiangqun The finite time survival probabilities in a compound binomial model. (Chinese. English summary) Zbl 0997.62085 Math. Appl. 14, No. 1, 94-97 (2001). MSC: 62P05 PDF BibTeX XML Cite \textit{R. Gong} and \textit{X. Yang}, Math. Appl. 14, No. 1, 94--97 (2001; Zbl 0997.62085)
Gong, Rizhao; Lu, Yongqing The survival probability in generalized compound binomial risk model. (Chinese. English summary) Zbl 0988.91042 Nat. Sci. J. Xiangtan Univ. 23, No. 2, 15-19 (2001). MSC: 91B30 PDF BibTeX XML Cite \textit{R. Gong} and \textit{Y. Lu}, Nat. Sci. J. Xiangtan Univ. 23, No. 2, 15--19 (2001; Zbl 0988.91042)
Cheng, Shixue; Gerber, Hans U.; Shiu, Elias S. W. Discounted probabilities and ruin theory in the compound binomial model. (English) Zbl 1013.91063 Insur. Math. Econ. 26, No. 2-3, 239-250 (2000). Reviewer: Alexandra Rodkina (Mona, Kingston) MSC: 91B30 PDF BibTeX XML Cite \textit{S. Cheng} et al., Insur. Math. Econ. 26, No. 2--3, 239--250 (2000; Zbl 1013.91063) Full Text: DOI
Cheng, Shixue; Wu, Biao The survival probability in finite time period in fully discrete risk model. (English) Zbl 0921.62127 Appl. Math., Ser. B (Engl. Ed.) 14, No. 1, 67-74 (1999). Reviewer: J.Steinebach (Marburg) MSC: 62P05 91B30 60K30 PDF BibTeX XML Cite \textit{S. Cheng} and \textit{B. Wu}, Appl. Math., Ser. B (Engl. Ed.) 14, No. 1, 67--74 (1999; Zbl 0921.62127) Full Text: DOI
Kaas, R.; Gerber, H. U. Some alternatives for the individual model. (English) Zbl 0818.62092 Insur. Math. Econ. 15, No. 2-3, 127-132 (1994). MSC: 62P05 PDF BibTeX XML Cite \textit{R. Kaas} and \textit{H. U. Gerber}, Insur. Math. Econ. 15, No. 2--3, 127--132 (1994; Zbl 0818.62092) Full Text: DOI
Willmot, Gordon E. Ruin probabilities in the compound binomial model. (English) Zbl 0778.62099 Insur. Math. Econ. 12, No. 2, 133-142 (1993). MSC: 62P05 PDF BibTeX XML Cite \textit{G. E. Willmot}, Insur. Math. Econ. 12, No. 2, 133--142 (1993; Zbl 0778.62099) Full Text: DOI
Stein, Gillian Z. Modelling counts in biological populations. (English) Zbl 0643.62060 Math. Sci. 13, No. 1, 56-65 (1988). MSC: 62P10 62-04 92F05 PDF BibTeX XML Cite \textit{G. Z. Stein}, Math. Sci. 13, No. 1, 56--65 (1988; Zbl 0643.62060)
Jørgensen, Bent Exponential dispersion models. (English) Zbl 0662.62078 J. R. Stat. Soc., Ser. B 49, 127-162 (1987). Reviewer: J.-R.Mathieu MSC: 62J99 62E20 62H12 62H15 PDF BibTeX XML Cite \textit{B. Jørgensen}, J. R. Stat. Soc., Ser. B 49, 127--162 (1987; Zbl 0662.62078)
Talwalker, Sheela Functional equations in characterizations of discrete distributions by Rao-Rubin condition and its variants. (English) Zbl 0608.62015 Commun. Stat., Theory Methods 15, 961-979 (1986). MSC: 62E10 PDF BibTeX XML Cite \textit{S. Talwalker}, Commun. Stat., Theory Methods 15, 961--979 (1986; Zbl 0608.62015) Full Text: DOI
Ong, S. H.; Lee, P. A. Bivariate non-central negative binomial distribution: Another generalisation. (English) Zbl 0601.62068 Metrika 33, 29-46 (1986). Reviewer: J.Panaretos MSC: 62H10 62E10 PDF BibTeX XML Cite \textit{S. H. Ong} and \textit{P. A. Lee}, Metrika 33, 29--46 (1986; Zbl 0601.62068) Full Text: DOI EuDML
Gerber, Hans U. Error bounds for the compound Poisson approximation. (English) Zbl 0541.62097 Insur. Math. Econ. 3, 191-194 (1984). MSC: 62P05 PDF BibTeX XML Cite \textit{H. U. Gerber}, Insur. Math. Econ. 3, 191--194 (1984; Zbl 0541.62097) Full Text: DOI
On the continuous-review (s,S) inventory model under compound renewal demand and random lead times. (English) Zbl 0581.90022 J. Appl. Probab. 20, 213-219 (1983). Reviewer: A.Ghosal MSC: 90B05 PDF BibTeX XML Cite J. Appl. Probab. 20, 213--219 (1983; Zbl 0581.90022) Full Text: DOI
Suzuki, Tatsuzo; Takahasi, Koiti Mathematical models for the interpretation of response uncertainty and their applications. (Japanese) Zbl 0417.62081 Proc. Inst. Stat. Math. 21, 69-123 (1974). MSC: 62P15 62D05 PDF BibTeX XML Cite \textit{T. Suzuki} and \textit{K. Takahasi}, Proc. Inst. Stat. Math. 21, 69--123 (1974; Zbl 0417.62081)