×

Efficient modelling of yeast cell cycles based on multisite phosphorylation using coloured hybrid Petri nets with marking-dependent arc weights. (English) Zbl 1382.92117

Summary: With the increasing interest in systems biology to investigate the dynamics and behaviour of biological reaction networks, the scales as well as the complexities of the models under study grew rapidly and continue to grow at even faster pace. Traditional single-scale simulation methods become more and more impractical and inefficient to study these complex reaction networks. A daunting example of biological systems that falls into this category is the cell cycle regulation. In order to accurately model repeated cell growth and division, the corresponding reaction network should exhibit some sort of nonlinearity. One of the techniques able to reproduce this nonlinear behaviour is to include a series of phosphorylation and dephosphorylation reactions of the regulating proteins. However, this modelling approach results in two main challenges: the existence of components with different abundance of molecules and substantially larger biochemical networks in terms of number of reactions and species, with many of them exposing equivalent structure and behaviour. In this paper, we address these two issues by exploiting the modelling power of coloured hybrid Petri nets \((\mathcal{HPN}^C)\). \(\mathcal{HPN}^C\) are a hybrid Petri net class that combines stochastic and deterministic events over a continuous time scale at the coloured level. Moreover, motivated by this case study we extend \(\mathcal{HPN}^C\) to include marking-dependent arc weights instead of just having constant values to define such weights.

MSC:

92C37 Cell biology
92-08 Computational methods for problems pertaining to biology
68Q85 Models and methods for concurrent and distributed computing (process algebras, bisimulation, transition nets, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Morgan, D., The Cell Cycle: Principles of Control (2007), New Science Press: New Science Press London
[2] Tyson, J.; Novak, B., Regulation of the eukaryotic cell cycle: Molecular antagonism, hysteresis, and irreversible transitions, J. Theoret. Biol., 210, 2, 249-263 (2001)
[3] Tyson, J. J.; Novk, B., Chapter 14 - Irreversible transitions, bistability and checkpoint controls in the eukaryotic cell cycle: A systems-level understanding, (Walhout, A. M.; Vidal, M.; Dekker, J., Handbook of Systems Biology (2013), Academic Press: Academic Press San Diego), 265-285
[4] Barik, D.; Baumann, W. T.; Paul, M. R.; Novak, B.; Tyson, J. J., A model of yeast cell-cycle regulation based on multisite phosphorylation, Mol. Syst. Biol., 6, 1 (2010)
[5] Chen, K.; Calzone, L.; Csikasz-Nagy, A.; Cross, F.; Novak, B.; Tyson, J., Integrative analysis of cell cycle control in budding yeast, Mol. Biol. Cel, 5, 8, 3841-3862 (2004)
[6] Fujita, S.; Matsui, M.; Matsuno, H.; Miyano, S., Modeling and simulation of fission yeast cell cycle on hybrid functional Petri net, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., E87-A, 11, 2919-2927 (2004)
[7] Kar, S.; Baumann, W. T.; Paul, M. R.; Tyson, J. J., Exploring the roles of noise in the eukaryotic cell cycle, Proc. Natl. Acad. Sci. USA, 106, 16, 6471-6476 (2009)
[8] Mura, I.; Csikász-Nagy, A., Stochastic Petri net extension of a yeast cell cycle model, J. Theoret. Biol., 254, 4, 850-860 (2008) · Zbl 1400.92341
[9] Sabouri-Ghomi, M.; Ciliberto, A.; Kar, S.; Novak, B.; Tyson, J. J., Antagonism and bistability in protein interaction networks, J. Theoret. Biol., 250, 1, 209-218 (2008) · Zbl 1397.92300
[10] Gillespie, D., Stochastic simulation of chemical kinetics, Annu. Rev. Phys. Chem., 58, 1, 35-55 (2007)
[11] Kapuy, O.; Barik, D.; Sananes, M. R.D.; Tyson, J. J.; Novk, B., Bistability by multiple phosphorylation of regulatory proteins, Prog. Biophys. Mol. Biol., 100, 13, 47-56 (2009)
[12] Qu, Z.; Weiss, J. N.; MacLellan, W. R., Regulation of the mammalian cell cycle: a model of the G1-to-S transition, Amer. J. Physiol.-Cell Physiol., 284, 2, C349-C364 (2003)
[13] Enciso, G.; Kellogg, D. R.; Vargas, A., Compact modeling of allosteric multisite proteins: application to a cell size checkpoint, PLoS Comput. Biol., 10, 2, 1-12 (2014)
[14] Holland, D. O.; Krainak, N. C.; Saucerman, J. J., Graphical Approach to Model Reduction for Nonlinear Biochemical Networks, PLoS One, 6, 8, 1-11 (2011)
[15] Palmisano, A.; Hoops, S.; Watson, L. T.; Jones Jr, T. C.; Tyson, J. J.; Shaffer, C. A., Multistate model builder (MSMB): A flexible editor for compact biochemical models, BMC Syst. Biol., 8, 1, 1-13 (2014)
[16] Laomettachit, T.; Chen, K. C.; Baumann, W. T.; Tyson, J. J., A model of yeast cell-cycle regulation based on a standard component modeling strategy for protein regulatory networks, PLoS One, 11, 5, 1-43 (2016)
[17] Wang, S.; Cao, Y., The abridgment and relaxation time for a linear multi-scale model based on multiple site phosphorylation, PLoS One, 10, 8, e0133295 (2015)
[18] Alla, H.; David, R., Continuous and hybrid Petri nets, J. Circuits Syst. Comput., 08, 01, 159-188 (1998)
[19] David, R.; Alla, H., Discrete, Continuous, and Hybrid Petri Nets (2010), Springer
[20] Reisig, W., Understanding Petri Nets (2013), Springer · Zbl 1278.68222
[21] Heiner, M.; Gilbert, D., BioModel engineering for multiscale systems biology, Prog. Biophys. Mol. Biol., 111, 23, 119-128 (2013), Conceptual Foundations of Systems Biology
[22] Herajy, M.; Heiner, M., Hybrid representation and simulation of stiff biochemical networks, J. Nonlinear Analysis: Hybrid Systems, 6, 4, 942-959 (2012) · Zbl 1269.93061
[23] Herajy, M.; Schwarick, M.; Heiner, M., (Hybrid Petri Nets for Modelling the Eukaryotic Cell Cycle (2013), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 123-141, (Chapter). Transactions on Petri Nets and Other Models of Concurrency VIII · Zbl 1395.92052
[24] Matsuno, H.; Nagasaki, M.; Miyano, S., Hybrid Petri net based modeling for biological pathway simulation, Nat. Comput., 10, 3, 1099-1120 (2011) · Zbl 1251.68161
[25] Jensen, K., Coloured Petri nets and the invariant-method, Theoret. Comput. Sci., 14, 3, 317-336 (1981) · Zbl 0475.68035
[26] Jensen, K.; Kristensen, L., Coloured Petri Nets (2009), Springer · Zbl 1215.68153
[27] Gilbert, D.; Heiner, M.; Liu, F.; Saunders, N., Colouring space - A coloured framework for spatial modelling in systems biology, (Colom, J.; Desel, J., Proc. PETRI NETS 2013. Proc. PETRI NETS 2013, LNCS, vol. 7927 (2013), Springer), 230-249 · Zbl 1381.92035
[28] Pârvu, O.; Gilbert, D.; Heiner, M.; Liu, F.; Saunders, N., Modelling and analysis of phase variation in bacterial colony growth, (Gupta, A.; Henzinger, T. A., Proc. CMSB 2013. Proc. CMSB 2013, LNCS/LNBI, vol. 8130 (2013), Springer), 78-91
[29] Liu, F.; Heiner, M., Multiscale modelling of coupled \(Ca{}^{2 +}\) channels using coloured stochastic Petri nets, IET Syst. Biol., 7, 4, 106-113 (2013)
[30] Gao, Q.; Gilbert, D.; Heiner, M.; Liu, F.; Maccagnola, D.; Tree, D., Multiscale Modelling and Analysis of Planar Cell Polarity in the Drosophila Wing, IEEE/ACM Trans. Comput. Biol. Bioinform., 10, 2, 337-351 (2013)
[31] Herajy, M.; Liu, F.; Rohr, C., Coloured hybrid Petri nets for systems biology, (Proc. of the 5th International Workshop on Biological Processes & Petri Nets (BioPPN), Satellite Event of PETRI NETS 2014. Proc. of the 5th International Workshop on Biological Processes & Petri Nets (BioPPN), Satellite Event of PETRI NETS 2014, CEUR Workshop Proceedings, vol. 1159 (2014), CEUR-WS.org), 60-76
[32] Liu, F.; Blätke, M.; Heiner, M.; Yang, M., Modelling and simulating reaction diffusion systems using coloured Petri nets, Comput. Biol. Med., 53, 297-308 (2014)
[33] Liu, F.; Heiner, M.; Yang, M., Modeling and analyzing biological systems using colored hierarchical Petri nets, illustrated by C. elegans vulval development, WSPC J. Biol. Syst., 22, 3, 463-493 (2014)
[34] Pârvu, O.; Gilbert, D.; Heiner, M.; Liu, F.; Saunders, N.; Shaw, S., Spatial-temporal modelling and analysis of bacterial colonies with phase variable genes, ACM Trans. Model. Comput. Simul. (TOMACS), 25, 2, 25 (2015)
[35] Valk, R., Self-Modifying nets, a natural extension of Petri nets, (Proceedings of the Fifth Colloquium on Automata, Languages and Programming (1978), Springer-Verlag: Springer-Verlag London, UK), 464-476 · Zbl 0415.68025
[36] Heiner, M.; Herajy, M.; Liu, F.; Rohr, C.; Schwarick, M., Snoopy -a unifying Petri net tool, (Haddad, S.; Pomello, L., Proc. PETRI NETS 2012. Proc. PETRI NETS 2012, LNCS, vol. 7347 (2012), Springer), 398-407
[37] Herajy, M.; Liu, F.; Rohr, C.; Heiner, M., Snoopy’s hybrid simulator: a tool to construct and simulate hybrid biological models, BMC Syst. Biol., 11, 1, 71 (2017)
[38] Dotoli, M.; Fanti, M.; Giua, A.; Seatzu, C., First-order hybrid Petri nets. An application to distributed manufacturing systems, Nonlinear Anal. Hybrid Syst., 2, 2, 408-430 (2008) · Zbl 1155.93385
[39] Ghomri, L.; Alla, H., Modeling and analysis using hybrid Petri nets, Nonlinear Anal. Hybrid Syst., 1, 2, 141-153 (2007) · Zbl 1121.68080
[40] Gudino-Mendoza, B.; López-Mellado, E.; Alla, H., A linear characterization of the switching dynamic behavior of timed continuous Petri nets with structural conflicts, Nonlinear Anal. Hybrid Syst., 19, 38-59 (2016) · Zbl 1344.68165
[41] Silva, M., Individuals, populations and fluid approximations: A Petri net based perspective, Nonlinear Anal. Hybrid Syst., 22, 72-97 (2016) · Zbl 1415.93171
[42] Nagasaki, M.; Saito, A.; Jeong, E.; Li, C.; Kojima, K.; Ikeda, E.; Miyano, S., Cell Illustrator 4.0: a Comp. Platform for Systems Biology, In Silico Biol., 10 (2010)
[43] Matsuno, H.; Tanaka, Y.; Aoshima, H.; Doi, A.; Matsui, M.; Miyano, S., Biopathways representation and simulation on hybrid functional Petri net, In Silico Biol., 3, 3 (2003)
[44] Herajy, M.; Heiner, M., Modeling and simulation of multi-scale environmental systems with generalized hybrid Petri nets, Front. Environ. Sci., 3, 53 (2015)
[45] Liu, F., Colored Petri Nets for Systems Biology (2012), Brandenburg University of Technology Cottbus, (Ph.D. thesis)
[46] Liu, F.; Heiner, M.; Yang, M., An efficient method for unfolding colored Petri nets, (Proceedings of the 2012 Winter Simulation Conference. Proceedings of the 2012 Winter Simulation Conference, (WSC 2012) (2012), IEEE: IEEE Berlin), 1-12, 978-1-4673-4781-5/12
[47] Gilbert, D.; Heiner, M., From Petri nets to differential equations -an integrative approach for biochemical network analysis, (Donatelli, S.; Thiagarajan, P. S., Petri Nets and Other Models of Concurrency - ICATPN 2006: 27th International Conference on Applications and Theory of Petri Nets and Other Models of Concurrency, Turku, Finland, June 26-30, 2006. Proceedings (2006), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 181-200 · Zbl 1234.68298
[48] Gillespie, D. T., A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22, 4, 403-434 (1976)
[49] Haseltine, E.; Rawlings, J., Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics, J. Chem. Phys., 117, 15, 6959-6969 (2002)
[50] Herajy, M.; Heiner, M., Accelerated simulation of hybrid biological models with quasi-disjoint deterministic and stochastic subnets, (Cinquemani, E.; Donzé, A., Hybrid Systems Biology: 5th International Workshop, HSB 2016,Grenoble, France, October 20-21, 2016, Proceedings. Hybrid Systems Biology: 5th International Workshop, HSB 2016,Grenoble, France, October 20-21, 2016, Proceedings, LNBI (2016), Springer International Publishing), 20-38 · Zbl 1428.92038
[51] Hindmarsh, A.; Brown, P.; Grant, K.; Lee, S.; Serban, R.; Shumaker, D.; Woodward, C., Sundials: Suite of nonlinear and differential/algebraic equation solvers, ACM Trans. Math. Software, 31, 363-396 (2005) · Zbl 1136.65329
[52] Liu, Z.; Pu, Y.; Li, F.; Shaffer, C. A.; Hoops, S.; Tyson, J. J.; Cao, Y., Hybrid modeling and simulation of stochastic effects on progression through the eukaryotic cell cycle, J. Chem. Phys., 136, 3, 034105 (2012)
[53] Wang, S.; Ahmadian, M.; Chen, M.; Tyson, J.; Cao, Y., A hybrid Stochastic Model of the Budding Yeast Cell Cycle Control Mechanism, (Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, BCB’16 (2016), ACM: ACM New York, NY, USA), 261-270
[54] Talia, S. D.; Skotheim, J. M.; Bean, J. M.; Siggia, E. D.; Cross, F. R., The effects of molecular noise and size control on variability in the budding yeast cell cycle, Nature, 448, 7156, 947-951 (2007)
[55] Lynch, M.; Marinov, G. K., The bioenergetic costs of a gene, Proc. Natl. Acad. Sci., 112, 51, 15690-15695 (2015)
[56] Herajy, M., Semantics-based parallelization for the stochastic simulation of complex cell cycle regulations, (2016 8th Cairo International Biomedical Engineering Conference. 2016 8th Cairo International Biomedical Engineering Conference, (CIBEC) (2016), IEEE), 110-113
[57] M. Herajy, F. Liu, C. Rohr, M. Heiner, (Coloured) Hybrid Petri Nets in Snoopy - User Manual, Tech. Rep. 01-17, Brandenburg University of Technology Cottbus, Department of Computer Science (March 2017). URL https://opus4.kobv.de/opus4-btu/files/4157/csr_01-17.pdf; M. Herajy, F. Liu, C. Rohr, M. Heiner, (Coloured) Hybrid Petri Nets in Snoopy - User Manual, Tech. Rep. 01-17, Brandenburg University of Technology Cottbus, Department of Computer Science (March 2017). URL https://opus4.kobv.de/opus4-btu/files/4157/csr_01-17.pdf
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.