Lu, Min; Huang, Jicai Global analysis in Bazykin’s model with Holling II functional response and predator competition. (English) Zbl 07319428 J. Differ. Equations 280, 99-138 (2021). MSC: 34C60 34C23 34D05 92D25 34C05 PDF BibTeX XML Cite \textit{M. Lu} and \textit{J. Huang}, J. Differ. Equations 280, 99--138 (2021; Zbl 07319428) Full Text: DOI
Buttà, Paolo; Cirillo, Emilio N. M.; Sciarra, Giulio Stability of the stationary solutions of the Allen-Cahn equation with non-constant stiffness. (English) Zbl 07328378 Wave Motion 98, Article ID 102641, 11 p. (2020). MSC: 74A50 35B35 76S05 PDF BibTeX XML Cite \textit{P. Buttà} et al., Wave Motion 98, Article ID 102641, 11 p. (2020; Zbl 07328378) Full Text: DOI
Ahlberg, Daniel; Deijfen, Maria; Hoffman, Christopher The two-type Richardson model in the half-plane. (English) Zbl 07325640 Ann. Appl. Probab. 30, No. 5, 2261-2273 (2020). MSC: 60K35 PDF BibTeX XML Cite \textit{D. Ahlberg} et al., Ann. Appl. Probab. 30, No. 5, 2261--2273 (2020; Zbl 07325640) Full Text: DOI Euclid
Zhou, Wei; Liu, Rong-Rong; Chu, Tong Bifurcation, global dynamics and synchronization in a Bertrand game with R&D spillover and semi-collusion. (English) Zbl 07314954 J. Difference Equ. Appl. 26, No. 9-10, 1321-1346 (2020). MSC: 37N40 39A28 39A60 PDF BibTeX XML Cite \textit{W. Zhou} et al., J. Difference Equ. Appl. 26, No. 9--10, 1321--1346 (2020; Zbl 07314954) Full Text: DOI
Dipierro, Serena A comparison between the nonlocal and the classical worlds: minimal Surfaces, phase transitions, and geometric flows. (English) Zbl 07308959 Notices Am. Math. Soc. 67, No. 9, 1324-1335 (2020). MSC: 53A10 53E10 53-02 53Z99 PDF BibTeX XML Cite \textit{S. Dipierro}, Notices Am. Math. Soc. 67, No. 9, 1324--1335 (2020; Zbl 07308959) Full Text: DOI
Shi, Shujing; Huang, Jicai; Wen, Jing; Ruan, Shigui Bifurcation analysis of a dynamical model for the innate immune response to initial pulmonary infections. (English) Zbl 07306784 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2050252, 22 p. (2020). MSC: 37N25 92D30 92C60 PDF BibTeX XML Cite \textit{S. Shi} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 16, Article ID 2050252, 22 p. (2020; Zbl 07306784) Full Text: DOI
Wang, Lin; Liu, Yan-Ping; Wang, Rui-Wu Weak predation strength promotes stable coexistence of predators and prey in the same chain and across chains. (English) Zbl 07306756 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 15, Article ID 2050228, 15 p. (2020). MSC: 92D25 92D40 PDF BibTeX XML Cite \textit{L. Wang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 15, Article ID 2050228, 15 p. (2020; Zbl 07306756) Full Text: DOI
Yan, Xiao; Li, Yanling; Wang, Yan’e A diffusive one-prey and two-cooperative-predators model with C-M functional response. (English) Zbl 07306752 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 15, Article ID 2050224, 31 p. (2020). MSC: 92D25 34B18 34C23 PDF BibTeX XML Cite \textit{X. Yan} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 15, Article ID 2050224, 31 p. (2020; Zbl 07306752) Full Text: DOI
Cisternas, Jaime; Rohe, Kevin; Wehner, Stefan Reaction-diffusion fronts and the butterfly set. (English) Zbl 07287050 Chaos 30, No. 11, 113138, 14 p. (2020). MSC: 35C07 35K57 35B32 PDF BibTeX XML Cite \textit{J. Cisternas} et al., Chaos 30, No. 11, 113138, 14 p. (2020; Zbl 07287050) Full Text: DOI
Zuo, C. Y.; Cao, H. J. Extinction or coexistence of a predator-prey model with constant-yield harvesting. (English) Zbl 1453.92283 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 6, 375-396 (2020). MSC: 92D25 34C23 PDF BibTeX XML Cite \textit{C. Y. Zuo} and \textit{H. J. Cao}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 6, 375--396 (2020; Zbl 1453.92283) Full Text: Link
Rizwan, C. L. Ahmed; Kumara, A. Naveena; Hegde, Kartheek; Vaid, Deepak Coexistent physics and microstructure of the regular Bardeen black hole in anti-de Sitter spacetime. (English) Zbl 1448.83025 Ann. Phys. 422, Article ID 168320, 13 p. (2020). MSC: 83C57 80A10 PDF BibTeX XML Cite \textit{C. L. A. Rizwan} et al., Ann. Phys. 422, Article ID 168320, 13 p. (2020; Zbl 1448.83025) Full Text: DOI
Lu, Kai; Xu, Wenjing; Yang, Qigui Chaos generated by a class of 3D three-zone piecewise affine systems with coexisting singular cycles. (English) Zbl 07281773 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050209, 17 p. (2020). MSC: 34A34 34A36 34C28 34C37 PDF BibTeX XML Cite \textit{K. Lu} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 14, Article ID 2050209, 17 p. (2020; Zbl 07281773) Full Text: DOI
Madec, Sten; Gjini, Erida Predicting \(N\)-strain coexistence from co-colonization interactions: epidemiology meets ecology and the replicator equation. (English) Zbl 1453.92308 Bull. Math. Biol. 82, No. 11, Paper No. 142, 25 p. (2020). MSC: 92D30 92D40 PDF BibTeX XML Cite \textit{S. Madec} and \textit{E. Gjini}, Bull. Math. Biol. 82, No. 11, Paper No. 142, 25 p. (2020; Zbl 1453.92308) Full Text: DOI
Andres, Jan Coexistence of subharmonic periodic solutions having various periods of differential inclusions on the circle with admissible impulses of degrees \(D=-1,0,1\). (English) Zbl 1454.37039 J. Dyn. Differ. Equations 32, No. 4, 1731-1747 (2020). MSC: 37E10 34A60 34K45 47H04 47H11 PDF BibTeX XML Cite \textit{J. Andres}, J. Dyn. Differ. Equations 32, No. 4, 1731--1747 (2020; Zbl 1454.37039) Full Text: DOI
Wang, Yu-Xia Positive steady states of the S-K-T competition model with spatially heterogeneous interactions. (English) Zbl 1453.92359 Nonlinear Anal., Real World Appl. 56, Article ID 103168, 20 p. (2020). MSC: 92D40 34B18 PDF BibTeX XML Cite \textit{Y.-X. Wang}, Nonlinear Anal., Real World Appl. 56, Article ID 103168, 20 p. (2020; Zbl 1453.92359) Full Text: DOI
Wang, Qi Global directed dynamics of a Lotka-Volterra competition-diffusion system. (English) Zbl 1453.37087 Nonlinear Anal., Real World Appl. 55, Article ID 103144, 12 p. (2020). MSC: 37N25 92D25 35K57 PDF BibTeX XML Cite \textit{Q. Wang}, Nonlinear Anal., Real World Appl. 55, Article ID 103144, 12 p. (2020; Zbl 1453.37087) Full Text: DOI
Mendonça, J. P.; Gleria, Iram; Lyra, M. L. Prey refuge and morphological defense mechanisms as nonlinear triggers in an intraguild predation food web. (English) Zbl 1453.92252 Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105373, 11 p. (2020). MSC: 92D25 92D40 PDF BibTeX XML Cite \textit{J. P. Mendonça} et al., Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105373, 11 p. (2020; Zbl 1453.92252) Full Text: DOI
Mergia, Woinshet D.; Patidar, Kailash C. High-order semi-implicit linear multistep LG scheme for a three species competition-diffusion system in two-dimensional spatial domain arising in ecology. (English) Zbl 1450.65068 Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105151, 16 p. (2020). MSC: 65L06 65L20 35K57 35B36 35Q92 92D40 PDF BibTeX XML Cite \textit{W. D. Mergia} and \textit{K. C. Patidar}, Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105151, 16 p. (2020; Zbl 1450.65068) Full Text: DOI
Zhang, Xiaofeng; Sun, Shulin Dynamical analysis of a stochastic delayed two-species competition chemostat model. (English) Zbl 1450.39009 Bull. Malays. Math. Sci. Soc. (2) 43, No. 5, 3725-3755 (2020). MSC: 39A50 39A60 92D25 92D40 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{S. Sun}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 5, 3725--3755 (2020; Zbl 1450.39009) Full Text: DOI
Deijfen, Maria; Rosengrenï, Sebastian The initial set in the frog model is irrelevant. (English) Zbl 07252770 Electron. Commun. Probab. 25, Paper No. 50, 7 p. (2020). MSC: 60K35 PDF BibTeX XML Cite \textit{M. Deijfen} and \textit{S. Rosengrenï}, Electron. Commun. Probab. 25, Paper No. 50, 7 p. (2020; Zbl 07252770) Full Text: DOI Euclid
Guo, Qian; He, Xiaoqing; Ni, Wei-Ming Global dynamics of a general Lotka-Volterra competition-diffusion system in heterogeneous environments. (English) Zbl 1442.92129 Discrete Contin. Dyn. Syst. 40, No. 11, 6547-6573 (2020). MSC: 92D25 92D40 35K57 35B40 PDF BibTeX XML Cite \textit{Q. Guo} et al., Discrete Contin. Dyn. Syst. 40, No. 11, 6547--6573 (2020; Zbl 1442.92129) Full Text: DOI
Ma, Li; Tang, De Evolution of dispersal in advective homogeneous environments. (English) Zbl 1447.35191 Discrete Contin. Dyn. Syst. 40, No. 10, 5815-5830 (2020). MSC: 35K57 35K51 34B40 37C65 92D25 PDF BibTeX XML Cite \textit{L. Ma} and \textit{D. Tang}, Discrete Contin. Dyn. Syst. 40, No. 10, 5815--5830 (2020; Zbl 1447.35191) Full Text: DOI
Tabekoueng Njitacke, Z.; Kengne, J.; Fotsin, H. B. Coexistence of multiple stable states and bursting oscillations in a 4D Hopfield neural network. (English) Zbl 07237121 Circuits Syst. Signal Process. 39, No. 7, 3424-3444 (2020). MSC: 92B20 PDF BibTeX XML Cite \textit{Z. Tabekoueng Njitacke} et al., Circuits Syst. Signal Process. 39, No. 7, 3424--3444 (2020; Zbl 07237121) Full Text: DOI
Wang, Shaoli; Wang, Xiao; Wu, Xiaotian Bifurcation analysis for a food chain model with nonmonotonic nutrition conversion rate of predator to top predator. (English) Zbl 1450.34036 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2050113, 19 p. (2020). MSC: 34C60 92D25 34C05 34D20 34C23 34D05 PDF BibTeX XML Cite \textit{S. Wang} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 8, Article ID 2050113, 19 p. (2020; Zbl 1450.34036) Full Text: DOI
Guo, Qian; He, Xiaoqing; Ni, Wei-Ming On the effects of carrying capacity and intrinsic growth rate on single and multiple species in spatially heterogeneous environments. (English) Zbl 1444.92088 J. Math. Biol. 81, No. 2, 403-433 (2020). MSC: 92D25 92D40 35K57 35B40 PDF BibTeX XML Cite \textit{Q. Guo} et al., J. Math. Biol. 81, No. 2, 403--433 (2020; Zbl 1444.92088) Full Text: DOI
Lin, Na’na; Zhang, Li’na Coexistence solutions of a Ivlev-type predator-prey model with cross-diffusion and a protection zone. (Chinese. English summary) Zbl 1449.35268 J. Yunnan Univ., Nat. Sci. 42, No. 2, 213-219 (2020). MSC: 35K57 92D25 PDF BibTeX XML Cite \textit{N. Lin} and \textit{L. Zhang}, J. Yunnan Univ., Nat. Sci. 42, No. 2, 213--219 (2020; Zbl 1449.35268) Full Text: DOI
Lu, Kun; Wang, Wendi; Li, Jianquan Dynamical behavior of a rotavirus disease model with two strains and homotypic protection. (English) Zbl 1451.92300 Discrete Contin. Dyn. Syst., Ser. B 25, No. 9, 3373-3391 (2020). Reviewer: Attila Dénes (Szeged) MSC: 92D30 92C60 34D23 PDF BibTeX XML Cite \textit{K. Lu} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 9, 3373--3391 (2020; Zbl 1451.92300) Full Text: DOI
Duan, Xi-Chao; Li, Xue-Zhi; Martcheva, Maia Coinfection dynamics of heroin transmission and HIV infection in a single population. (English) Zbl 1447.92415 J. Biol. Dyn. 14, No. 1, 116-142 (2020). MSC: 92D30 PDF BibTeX XML Cite \textit{X.-C. Duan} et al., J. Biol. Dyn. 14, No. 1, 116--142 (2020; Zbl 1447.92415) Full Text: DOI
Wang, Yuanshi; Wu, Hong; He, Yiyang; Wang, Zhihui; Hu, Kun Population abundance of two-patch competitive systems with asymmetric dispersal. (English) Zbl 1448.34102 J. Math. Biol. 81, No. 1, 315-341 (2020). MSC: 34C60 92D25 34D05 34C05 34D20 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Math. Biol. 81, No. 1, 315--341 (2020; Zbl 1448.34102) Full Text: DOI
Ma, Li; Tang, De Existence and stability of stationary states of a reaction-diffusion-advection model for two competing species. (English) Zbl 1446.35226 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 5, Article ID 2050065, 14 p. (2020). MSC: 35Q92 92D25 35B32 35B41 35B35 35A01 PDF BibTeX XML Cite \textit{L. Ma} and \textit{D. Tang}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 5, Article ID 2050065, 14 p. (2020; Zbl 1446.35226) Full Text: DOI
Mulberry, Nicola; Rutherford, Alexander; Colijn, Caroline Systematic comparison of coexistence in models of drug-sensitive and drug-resistant pathogen strains. (English) Zbl 07208411 Theor. Popul. Biol. 133, 150-158 (2020). MSC: 92 PDF BibTeX XML Cite \textit{N. Mulberry} et al., Theor. Popul. Biol. 133, 150--158 (2020; Zbl 07208411) Full Text: DOI
Amarasekare, Priyanga The evolution of coexistence theory. (English) Zbl 07208399 Theor. Popul. Biol. 133, 49-51 (2020). MSC: 92 PDF BibTeX XML Cite \textit{P. Amarasekare}, Theor. Popul. Biol. 133, 49--51 (2020; Zbl 07208399) Full Text: DOI
Zu, Jian; Li, Miaolei; Gu, Yuexi; Fu, Shuting Modelling the evolutionary dynamics of host resistance-related traits in a susceptible-infected community with density-dependent mortality. (English) Zbl 1444.92073 Discrete Contin. Dyn. Syst., Ser. B 25, No. 8, 3049-3086 (2020). MSC: 92D15 92D25 92D30 35Q92 PDF BibTeX XML Cite \textit{J. Zu} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 8, 3049--3086 (2020; Zbl 1444.92073) Full Text: DOI
Popovic, Lea; Peuckert, Liam Diffusion dynamics on the coexistence subspace in a stochastic evolutionary game. (English) Zbl 1434.60203 J. Math. Biol. 80, No. 6, 1655-1682 (2020). MSC: 60J28 60J60 91A15 91A22 92D15 92D25 PDF BibTeX XML Cite \textit{L. Popovic} and \textit{L. Peuckert}, J. Math. Biol. 80, No. 6, 1655--1682 (2020; Zbl 1434.60203) Full Text: DOI
Shi, Junping; Wu, Yixiang; Zou, Xingfu Coexistence of competing species for intermediate dispersal rates in a reaction-diffusion chemostat model. (English) Zbl 1446.35055 J. Dyn. Differ. Equations 32, No. 2, 1085-1112 (2020). MSC: 35K57 35Q92 35B40 35B35 92D40 35K51 92D25 PDF BibTeX XML Cite \textit{J. Shi} et al., J. Dyn. Differ. Equations 32, No. 2, 1085--1112 (2020; Zbl 1446.35055) Full Text: DOI
He, Xiaoqing; Hsu, Sze-Bi; Wang, Feng-Bin A periodic-parabolic droop model for two species competition in an unstirred chemostat. (English) Zbl 1439.35022 Discrete Contin. Dyn. Syst. 40, No. 7, 4427-4451 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35B10 35K51 35K57 92D25 92C17 PDF BibTeX XML Cite \textit{X. He} et al., Discrete Contin. Dyn. Syst. 40, No. 7, 4427--4451 (2020; Zbl 1439.35022) Full Text: DOI
Tomeček, Jan; Rachůnková, Irena; Burkotová, Jana; Stryja, Jakub Coexistence of bouncing and classical periodic solutions of generalized Lazer-Solimini equation. (English) Zbl 1441.34052 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111783, 24 p. (2020). Reviewer: Guglielmo Feltrin (Spilimbergo) MSC: 34C25 34B18 37C60 37E40 PDF BibTeX XML Cite \textit{J. Tomeček} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 196, Article ID 111783, 24 p. (2020; Zbl 1441.34052) Full Text: DOI
López-Gómez, Julián; Muñoz-Hernández, Eduardo; Zanolin, Fabio On the applicability of the Poincaré-Birkhoff twist theorem to a class of planar periodic predator-prey models. (English) Zbl 1441.34060 Discrete Contin. Dyn. Syst. 40, No. 4, 2393-2419 (2020). Reviewer: Changjin Xu (Guiyang) MSC: 34C60 34C25 37E40 92D25 37C60 PDF BibTeX XML Cite \textit{J. López-Gómez} et al., Discrete Contin. Dyn. Syst. 40, No. 4, 2393--2419 (2020; Zbl 1441.34060) Full Text: DOI
Diagne, Mamadou L.; Seydi, Ousmane; Sy, Aissata A. B. A two-group age of infection epidemic model with periodic behavioral changes. (English) Zbl 1437.92117 Discrete Contin. Dyn. Syst., Ser. B 25, No. 6, 2057-2092 (2020). MSC: 92D30 34K20 34K13 PDF BibTeX XML Cite \textit{M. L. Diagne} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 6, 2057--2092 (2020; Zbl 1437.92117) Full Text: DOI
Blé, Gamaliel; Dela-Rosa, Miguel Angel; Loreto-Hernández, Iván Neimark-Sacker bifurcation analysis in an intraguild predation model with general functional responses. (English) Zbl 1439.37085 J. Difference Equ. Appl. 26, No. 2, 223-243 (2020). MSC: 37N25 37G15 34C23 39A28 92D25 PDF BibTeX XML Cite \textit{G. Blé} et al., J. Difference Equ. Appl. 26, No. 2, 223--243 (2020; Zbl 1439.37085) Full Text: DOI
Ryals, Brian A sufficient condition for stability using slopes of isoclines in planar mappings. (English) Zbl 1435.92063 J. Difference Equ. Appl. 26, No. 3, 370-383 (2020). MSC: 92D25 37C75 PDF BibTeX XML Cite \textit{B. Ryals}, J. Difference Equ. Appl. 26, No. 3, 370--383 (2020; Zbl 1435.92063) Full Text: DOI
Gao, Jing; Zhao, Yulin Revisiting limit cycles for 3-monomial differential equations. (English) Zbl 1453.34038 J. Math. Anal. Appl. 485, No. 2, Article ID 123862, 12 p. (2020). Reviewer: Alexander Grin (Grodno) MSC: 34C05 34C14 34C08 PDF BibTeX XML Cite \textit{J. Gao} and \textit{Y. Zhao}, J. Math. Anal. Appl. 485, No. 2, Article ID 123862, 12 p. (2020; Zbl 1453.34038) Full Text: DOI
Choi, Wonhyung; Ahn, Inkyung Predator-prey interaction systems with non-uniform dispersal in a spatially heterogeneous environment. (English) Zbl 1436.35240 J. Math. Anal. Appl. 485, No. 2, Article ID 123860, 21 p. (2020). MSC: 35K57 35B35 35K51 35Q92 92D25 PDF BibTeX XML Cite \textit{W. Choi} and \textit{I. Ahn}, J. Math. Anal. Appl. 485, No. 2, Article ID 123860, 21 p. (2020; Zbl 1436.35240) Full Text: DOI
Ma, Li; Guo, Shangjiang Bifurcation and stability of a two-species diffusive Lotka-Volterra model. (English) Zbl 1436.35230 Commun. Pure Appl. Anal. 19, No. 3, 1205-1232 (2020). MSC: 35K51 35Q92 35B40 35K57 92D25 PDF BibTeX XML Cite \textit{L. Ma} and \textit{S. Guo}, Commun. Pure Appl. Anal. 19, No. 3, 1205--1232 (2020; Zbl 1436.35230) Full Text: DOI
Strobl, Maximilian A. R.; Krause, Andrew L.; Damaghi, Mehdi; Gillies, Robert; Anderson, Alexander R. A.; Maini, Philip K. Mix and match: phenotypic coexistence as a key facilitator of cancer invasion. (English) Zbl 1432.92031 Bull. Math. Biol. 82, No. 1, Paper No. 15, 26 p. (2020). MSC: 92C32 92C17 35Q92 PDF BibTeX XML Cite \textit{M. A. R. Strobl} et al., Bull. Math. Biol. 82, No. 1, Paper No. 15, 26 p. (2020; Zbl 1432.92031) Full Text: DOI Link
Contento, Lorenzo; Mimura, Masayasu Complex pattern formation driven by the interaction of stable fronts in a competition-diffusion system. (English) Zbl 1434.35252 J. Math. Biol. 80, No. 1-2, 303-342 (2020). MSC: 35Q92 92D25 35K57 35C07 35B36 92C15 35B32 PDF BibTeX XML Cite \textit{L. Contento} and \textit{M. Mimura}, J. Math. Biol. 80, No. 1--2, 303--342 (2020; Zbl 1434.35252) Full Text: DOI
Du, Yanfei; Niu, Ben; Guo, Yuxiao; Wei, Junjie Double Hopf bifurcation in delayed reaction-diffusion systems. (English) Zbl 1437.35052 J. Dyn. Differ. Equations 32, No. 1, 313-358 (2020). MSC: 35B32 35B41 37L10 35K51 35K57 35Q92 PDF BibTeX XML Cite \textit{Y. Du} et al., J. Dyn. Differ. Equations 32, No. 1, 313--358 (2020; Zbl 1437.35052) Full Text: DOI
Xu, Fangfang; Gan, Wenzhen; Tang, De Global dynamics of a Lotka-Volterra competitive system from river ecology: general boundary conditions. (English) Zbl 1430.35135 Nonlinearity 33, No. 4, 1528-1541 (2020). MSC: 35K57 35K61 37C65 92D25 35Q92 37N25 PDF BibTeX XML Cite \textit{F. Xu} et al., Nonlinearity 33, No. 4, 1528--1541 (2020; Zbl 1430.35135) Full Text: DOI
Sun, Xianbo; Huang, Wentao; Cai, Junning Coexistence of the solitary and periodic waves in convecting shallow water fluid. (English) Zbl 1433.35297 Nonlinear Anal., Real World Appl. 53, Article ID 103067, 17 p. (2020). MSC: 35Q35 35Q53 76B25 76B15 76R10 35C07 PDF BibTeX XML Cite \textit{X. Sun} et al., Nonlinear Anal., Real World Appl. 53, Article ID 103067, 17 p. (2020; Zbl 1433.35297) Full Text: DOI
Wei, Xi; Wei, Guangsheng; Wang, Feng-Bin; Nie, Hua Dynamics and steady-state analysis of an unstirred chemostat model with internal storage and toxin mortality. (English) Zbl 1439.35279 Nonlinear Anal., Real World Appl. 52, Article ID 103044, 31 p. (2020). MSC: 35K57 35Q92 92D25 PDF BibTeX XML Cite \textit{X. Wei} et al., Nonlinear Anal., Real World Appl. 52, Article ID 103044, 31 p. (2020; Zbl 1439.35279) Full Text: DOI
Nie, Hua; Hsu, Sze-Bi; Wang, Feng-Bin Global dynamics of a reaction-diffusion system with intraguild predation and internal storage. (English) Zbl 1428.35168 Discrete Contin. Dyn. Syst., Ser. B 25, No. 3, 877-901 (2020). MSC: 35K57 35K55 92D25 35Q92 PDF BibTeX XML Cite \textit{H. Nie} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 3, 877--901 (2020; Zbl 1428.35168) Full Text: DOI
Wang, Qi On steady state of some Lotka-Volterra competition-diffusion-advection model. (English) Zbl 1433.92043 Discrete Contin. Dyn. Syst., Ser. B 25, No. 3, 859-875 (2020). Reviewer: Leonid Berezanski (Beer-Sheva) MSC: 92D25 92D40 35K57 35Q92 PDF BibTeX XML Cite \textit{Q. Wang}, Discrete Contin. Dyn. Syst., Ser. B 25, No. 3, 859--875 (2020; Zbl 1433.92043) Full Text: DOI
López-Gómez, Julián; Muñoz-Hernández, Eduardo Global structure of subharmonics in a class of periodic predator-prey models. (English) Zbl 1431.34066 Nonlinearity 33, No. 1, 34-71 (2020). Reviewer: Zhanyuan Hou (London) MSC: 34C60 34C25 34C23 92D25 37C60 PDF BibTeX XML Cite \textit{J. López-Gómez} and \textit{E. Muñoz-Hernández}, Nonlinearity 33, No. 1, 34--71 (2020; Zbl 1431.34066) Full Text: DOI
Wei, Hsiu-Chuan A mathematical model of intraguild predation with prey switching. (English) Zbl 07316739 Math. Comput. Simul. 165, 107-118 (2019). MSC: 92D PDF BibTeX XML Cite \textit{H.-C. Wei}, Math. Comput. Simul. 165, 107--118 (2019; Zbl 07316739) Full Text: DOI
Li, Shanbing; Dong, Yaying Stationary patterns of a prey-predator system with a protection zone and cross-diffusion of fractional type. (English) Zbl 1442.92136 Comput. Math. Appl. 77, No. 7, 1873-1887 (2019). MSC: 92D25 35Q92 35B32 35B40 35K57 PDF BibTeX XML Cite \textit{S. Li} and \textit{Y. Dong}, Comput. Math. Appl. 77, No. 7, 1873--1887 (2019; Zbl 1442.92136) Full Text: DOI
Zhao, Na; Zhou, Wei; Wang, Wenrui The bifurcation analysis and chaos control of a mixed duopoly model. (Chinese. English summary) Zbl 1449.34177 J. Jiangxi Norm. Univ., Nat. Sci. Ed. 43, No. 6, 605-612 (2019). MSC: 34C60 34C23 34C28 93B52 34C05 34D45 34H10 34K35 PDF BibTeX XML Cite \textit{N. Zhao} et al., J. Jiangxi Norm. Univ., Nat. Sci. Ed. 43, No. 6, 605--612 (2019; Zbl 1449.34177) Full Text: DOI
Yang, Yuanqi; Chen, Ge; Su, Min Effects of fragmented landscapes on disease transmission in food webs. (Chinese. English summary) Zbl 1449.92051 J. Hefei Univ. Technol., Nat. Sci. 42, No. 12, 1715-1718 (2019). MSC: 92D30 92D40 92D25 PDF BibTeX XML Cite \textit{Y. Yang} et al., J. Hefei Univ. Technol., Nat. Sci. 42, No. 12, 1715--1718 (2019; Zbl 1449.92051) Full Text: DOI
Zhao, Yeqing; Li, Guihua Theoretical analysis of predator-prey system considering cooperative hunting. (Chinese. English summary) Zbl 1449.34180 J. Nat. Sci. Heilongjiang Univ. 36, No. 4, 431-435 (2019). MSC: 34C60 34D20 34C23 92D40 34C05 PDF BibTeX XML Cite \textit{Y. Zhao} and \textit{G. Li}, J. Nat. Sci. Heilongjiang Univ. 36, No. 4, 431--435 (2019; Zbl 1449.34180) Full Text: DOI
Yao, Shengwei; Ding, Liwang; Song, Zigen; Xu, Jieqiong Two bifurcation routes to multiple chaotic coexistence in an inertial two-neural system with time delay. (English) Zbl 1439.70032 Nonlinear Dyn. 95, No. 2, 1549-1563 (2019). MSC: 70K55 70K50 92B20 PDF BibTeX XML Cite \textit{S. Yao} et al., Nonlinear Dyn. 95, No. 2, 1549--1563 (2019; Zbl 1439.70032) Full Text: DOI
Dong, Enzeng; Yuan, Mingfeng; Du, Shengzhi; Chen, Zengqiang A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator. (English) Zbl 07187133 Appl. Math. Modelling 73, 40-71 (2019). MSC: 37 94 PDF BibTeX XML Cite \textit{E. Dong} et al., Appl. Math. Modelling 73, 40--71 (2019; Zbl 07187133) Full Text: DOI
Pinto, Carla M. A.; Carvalho, Ana R. M. Diabetes mellitus and TB co-existence: clinical implications from a fractional order modelling. (English) Zbl 07183465 Appl. Math. Modelling 68, 219-243 (2019). MSC: 92 34 PDF BibTeX XML Cite \textit{C. M. A. Pinto} and \textit{A. R. M. Carvalho}, Appl. Math. Modelling 68, 219--243 (2019; Zbl 07183465) Full Text: DOI
Cirillo, Emilio N. M.; Saccomandi, Giuseppe; Sciarra, Giulio Compact structures as true non-linear phenomena. (English) Zbl 1435.35106 Math. Eng. (Springfield) 1, No. 3, 434-446 (2019). MSC: 35C07 PDF BibTeX XML Cite \textit{E. N. M. Cirillo} et al., Math. Eng. (Springfield) 1, No. 3, 434--446 (2019; Zbl 1435.35106) Full Text: DOI
Li, Guofang; Sun, Jie; Ding, Wangcai Dynamics of a vibro-impact system by the global analysis method in parameter-state space. (English) Zbl 1430.34054 Nonlinear Dyn. 97, No. 1, 541-557 (2019). MSC: 34C23 34C15 37G10 PDF BibTeX XML Cite \textit{G. Li} et al., Nonlinear Dyn. 97, No. 1, 541--557 (2019; Zbl 1430.34054) Full Text: DOI
Zhang, Qingqing; Huang, Zaitang; Lin, Yi; Zhang, Lu; Lu, Guiju Coexistence and exclusion of a stochastic plant-herbivore model. (Chinese. English summary) Zbl 07156336 J. Sichuan Norm. Univ., Nat. Sci. 42, No. 3, 342-353 (2019). MSC: 92D40 60H10 92D25 PDF BibTeX XML Cite \textit{Q. Zhang} et al., J. Sichuan Norm. Univ., Nat. Sci. 42, No. 3, 342--353 (2019; Zbl 07156336) Full Text: DOI
Deijfen, Maria; Hirscher, Timo; Lopes, Fabio Competing frogs on \({\mathbb Z}^d\). (English) Zbl 1428.60137 Electron. J. Probab. 24, Paper No. 146, 17 p. (2019). MSC: 60K35 PDF BibTeX XML Cite \textit{M. Deijfen} et al., Electron. J. Probab. 24, Paper No. 146, 17 p. (2019; Zbl 1428.60137) Full Text: DOI Euclid arXiv
Dal Forno, Arianna; Merlone, Ugo Heterogeneous society in binary choices with externalities. (English) Zbl 1429.91045 Dyn. Games Appl. 9, No. 2, 433-457 (2019). MSC: 91A22 91A20 PDF BibTeX XML Cite \textit{A. Dal Forno} and \textit{U. Merlone}, Dyn. Games Appl. 9, No. 2, 433--457 (2019; Zbl 1429.91045) Full Text: DOI
Kamrujjaman, Md. Directed vs regular diffusion strategy: evolutionary stability analysis of a competition model and an ideal free pair. (English) Zbl 1429.92119 Differ. Equ. Appl. 11, No. 2, 267-290 (2019). MSC: 92D25 92D40 92D15 35K57 PDF BibTeX XML Cite \textit{Md. Kamrujjaman}, Differ. Equ. Appl. 11, No. 2, 267--290 (2019; Zbl 1429.92119) Full Text: DOI
Ahlberg, Daniel; Deijfen, Maria; Janson, Svante Competing first passage percolation on random graphs with finite variance degrees. (English) Zbl 07138326 Random Struct. Algorithms 55, No. 3, 545-559 (2019). MSC: 05C80 05C07 05C85 PDF BibTeX XML Cite \textit{D. Ahlberg} et al., Random Struct. Algorithms 55, No. 3, 545--559 (2019; Zbl 07138326) Full Text: DOI arXiv
Zhou, Jie; Zhou, Wei; Chu, Tong; Chang, Ying-xiang; Huang, Meng-jia Bifurcation, intermittent chaos and multi-stability in a two-stage Cournot game with R&D spillover and product differentiation. (English) Zbl 1429.91203 Appl. Math. Comput. 341, 358-378 (2019). MSC: 91B55 37N40 91A20 PDF BibTeX XML Cite \textit{J. Zhou} et al., Appl. Math. Comput. 341, 358--378 (2019; Zbl 1429.91203) Full Text: DOI
Issa, Tahir Bachar; Shen, Wenxian Uniqueness and stability of coexistence states in two species models with/without chemotaxis on bounded heterogeneous environments. (English) Zbl 1439.35492 J. Dyn. Differ. Equations 31, No. 4, 2305-2338 (2019). Reviewer: Piotr Biler (Wrocław) MSC: 35Q92 35B40 92C17 35K51 35K57 35A02 PDF BibTeX XML Cite \textit{T. B. Issa} and \textit{W. Shen}, J. Dyn. Differ. Equations 31, No. 4, 2305--2338 (2019; Zbl 1439.35492) Full Text: DOI arXiv
Andres, Jan Application of the randomized Sharkovsky-type theorems to random impulsive differential equations and inclusions. (English) Zbl 1429.34066 J. Dyn. Differ. Equations 31, No. 4, 2127-2144 (2019). MSC: 34F05 34B37 37E15 47H10 47H40 34A60 34C25 PDF BibTeX XML Cite \textit{J. Andres}, J. Dyn. Differ. Equations 31, No. 4, 2127--2144 (2019; Zbl 1429.34066) Full Text: DOI
Hsu, Sze-Bi; Wang, Yi; Zhou, Hui Analysis of a mathematical model arising from barnacle-algae-mussel interactions. (English) Zbl 1427.34062 SIAM J. Appl. Math. 79, No. 5, 2032-2053 (2019). MSC: 34C60 34D05 92D25 92D40 34D23 34C05 PDF BibTeX XML Cite \textit{S.-B. Hsu} et al., SIAM J. Appl. Math. 79, No. 5, 2032--2053 (2019; Zbl 1427.34062) Full Text: DOI
Grover, James P.; Wang, Feng-Bin Parasitic plasmid-host dynamics and host competition in flowing habitats. (English) Zbl 1423.35140 Math. Biosci. 311, 109-124 (2019). MSC: 35K10 35Q92 47A75 92B05 PDF BibTeX XML Cite \textit{J. P. Grover} and \textit{F.-B. Wang}, Math. Biosci. 311, 109--124 (2019; Zbl 1423.35140) Full Text: DOI
Tian, Mengxue; Guan, Zheng; Liu, Zhiguang The dynamics of an intraguild predation model in metapopulation. (Chinese. English summary) Zbl 1438.92075 J. Henan Univ., Nat. Sci. 49, No. 2, 246-252 (2019). MSC: 92D25 92D40 34D20 PDF BibTeX XML Cite \textit{M. Tian} et al., J. Henan Univ., Nat. Sci. 49, No. 2, 246--252 (2019; Zbl 1438.92075) Full Text: DOI
Zhang, Lisheng; Zhang, Zhiyong; Ma, Kaihua; Li, Guofang Studying oscillations in convection Cahn-Hilliard system with improved lattice Boltzmann model. (Chinese. English summary) Zbl 07112666 J. Guangxi Norm. Univ., Nat. Sci. 37, No. 2, 15-26 (2019). MSC: 82 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Guangxi Norm. Univ., Nat. Sci. 37, No. 2, 15--26 (2019; Zbl 07112666) Full Text: DOI
Ma, Li; Luo, Youquan; Li, Shiyu Bifurcation analysis of a two-species diffusive model. (English) Zbl 1423.35026 Appl. Math. Lett. 96, 236-242 (2019). MSC: 35B32 35J25 35J61 35K57 PDF BibTeX XML Cite \textit{L. Ma} et al., Appl. Math. Lett. 96, 236--242 (2019; Zbl 1423.35026) Full Text: DOI
Luo, Bimei; Jia, Yunfeng; Lou, Shuoshuo Coexistence for a predator-prey model with strong Allee effect. (Chinese. English summary) Zbl 1438.35221 J. Yunnan Univ., Nat. Sci. 41, No. 1, 13-17 (2019). MSC: 35K51 35Q92 92D25 PDF BibTeX XML Cite \textit{B. Luo} et al., J. Yunnan Univ., Nat. Sci. 41, No. 1, 13--17 (2019; Zbl 1438.35221) Full Text: DOI
Andres, Jan; Pastor, Karel Sharp Block-Sharkovsky type theorem for multivalued maps on the circle and its application to differential equations and inclusions. (English) Zbl 1436.37050 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 9, Article ID 1950127, 14 p. (2019). Reviewer: George Stoica (Saint John) MSC: 37E10 37E05 37F05 34A60 PDF BibTeX XML Cite \textit{J. Andres} and \textit{K. Pastor}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 9, Article ID 1950127, 14 p. (2019; Zbl 1436.37050) Full Text: DOI
Fonzin Fozin, Theo; Kengne, R.; Kengne, J.; Srinivasan, K.; Souffo Tagueu, M.; Pelap, F. B. Control of multistability in a self-excited memristive hyperchaotic oscillator. (English) Zbl 1430.94108 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 9, Article ID 1950119, 14 p. (2019). MSC: 94C05 34H10 PDF BibTeX XML Cite \textit{T. Fonzin Fozin} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 9, Article ID 1950119, 14 p. (2019; Zbl 1430.94108) Full Text: DOI
Tang, De Dynamical behavior for a Lotka-Volterra weak competition system in advective homogeneous environment. (English) Zbl 1420.35133 Discrete Contin. Dyn. Syst., Ser. B 24, No. 9, 4913-4928 (2019). MSC: 35K57 35B32 92D25 35Q92 PDF BibTeX XML Cite \textit{D. Tang}, Discrete Contin. Dyn. Syst., Ser. B 24, No. 9, 4913--4928 (2019; Zbl 1420.35133) Full Text: DOI
Yuan, Yueding; Wang, Yang; Zou, Xingfu Spatial dynamics of a Lotka-Volterra model with a shifting habitat. (English) Zbl 1421.92038 Discrete Contin. Dyn. Syst., Ser. B 24, No. 10, 5633-5671 (2019). MSC: 92D40 92D25 35K57 35Q92 PDF BibTeX XML Cite \textit{Y. Yuan} et al., Discrete Contin. Dyn. Syst., Ser. B 24, No. 10, 5633--5671 (2019; Zbl 1421.92038) Full Text: DOI
Ladeira, Denis G.; de Oliveira, Marcelo M. Chaotic coexistence in a resource-consumer model. (English) Zbl 1418.92221 J. Biol. Syst. 27, No. 2, 167-184 (2019). MSC: 92D40 PDF BibTeX XML Cite \textit{D. G. Ladeira} and \textit{M. M. de Oliveira}, J. Biol. Syst. 27, No. 2, 167--184 (2019; Zbl 1418.92221) Full Text: DOI
Marchionna, Clelia; Panizzi, Stefano On the instability tongues of the Hill equation coupled with a conservative nonlinear oscillator. (English) Zbl 07096934 J. Math. Anal. Appl. 479, No. 2, 2139-2164 (2019). Reviewer: Hakan Adıgüzel (Serdivan) MSC: 34C15 34D20 34B30 PDF BibTeX XML Cite \textit{C. Marchionna} and \textit{S. Panizzi}, J. Math. Anal. Appl. 479, No. 2, 2139--2164 (2019; Zbl 07096934) Full Text: DOI
Eigentler, Lukas; Sherratt, Jonathan A. Metastability as a coexistence mechanism in a model for dryland vegetation patterns. (English) Zbl 1417.92209 Bull. Math. Biol. 81, No. 7, 2290-2322 (2019). MSC: 92D40 35Q92 PDF BibTeX XML Cite \textit{L. Eigentler} and \textit{J. A. Sherratt}, Bull. Math. Biol. 81, No. 7, 2290--2322 (2019; Zbl 1417.92209) Full Text: DOI
Benaïm, Michel; Schreiber, Sebastian J. Persistence and extinction for stochastic ecological models with internal and external variables. (English) Zbl 1417.92207 J. Math. Biol. 79, No. 1, 393-431 (2019). MSC: 92D40 92D25 91A15 91A22 39A50 PDF BibTeX XML Cite \textit{M. Benaïm} and \textit{S. J. Schreiber}, J. Math. Biol. 79, No. 1, 393--431 (2019; Zbl 1417.92207) Full Text: DOI arXiv
Maliyoni, Milliward; Chirove, Faraimunashe; Gaff, Holly D.; Govinder, Keshlan S. A stochastic epidemic model for the dynamics of two pathogens in a single tick population. (English) Zbl 1415.92187 Theor. Popul. Biol. 127, 75-90 (2019). MSC: 92D30 60J28 60J85 PDF BibTeX XML Cite \textit{M. Maliyoni} et al., Theor. Popul. Biol. 127, 75--90 (2019; Zbl 1415.92187) Full Text: DOI
Zhu, Fuguo; Pan, Shuxia Minimal wave speed of a competitive integrodifference system. (English) Zbl 1419.45005 Int. J. Biomath. 12, No. 3, Article ID 1950031, 12 p. (2019). MSC: 45J05 45M05 92D40 39A12 PDF BibTeX XML Cite \textit{F. Zhu} and \textit{S. Pan}, Int. J. Biomath. 12, No. 3, Article ID 1950031, 12 p. (2019; Zbl 1419.45005) Full Text: DOI
Choi, Wonhyung; Baek, Seunghyeon; Ahn, Inkyung Intraguild predation with evolutionary dispersal in a spatially heterogeneous environment. (English) Zbl 1415.92130 J. Math. Biol. 78, No. 7, 2141-2169 (2019). MSC: 92D15 92D40 92D25 PDF BibTeX XML Cite \textit{W. Choi} et al., J. Math. Biol. 78, No. 7, 2141--2169 (2019; Zbl 1415.92130) Full Text: DOI
Dong, Yaying; Li, Shanbing; Li, Yanling Effects of cross-diffusion for a prey-predator system in a heterogeneous environment. (English) Zbl 1418.35178 Electron. J. Differ. Equ. 2019, Paper No. 44, 14 p. (2019). MSC: 35J65 35B32 92D25 PDF BibTeX XML Cite \textit{Y. Dong} et al., Electron. J. Differ. Equ. 2019, Paper No. 44, 14 p. (2019; Zbl 1418.35178) Full Text: Link
Song, Zigen; Qian, Weiguo; Zhen, Bin; Kong, Xianghong Multiple bifurcations and periodic coexistence in a delayed Hopfield two-neural system with a monotonic activation function. (English) Zbl 07056985 Adv. Difference Equ. 2019, Paper No. 167, 18 p. (2019). MSC: 39 34 PDF BibTeX XML Cite \textit{Z. Song} et al., Adv. Difference Equ. 2019, Paper No. 167, 18 p. (2019; Zbl 07056985) Full Text: DOI
Hsu, Sze-Bi; Ho, Yi-Hui; Wang, Feng-Bin Mathematical analysis on a droop model with intraguild predation. (English) Zbl 1415.34089 Taiwanese J. Math. 23, No. 2, 351-373 (2019). MSC: 34C60 34D20 92D25 34D05 PDF BibTeX XML Cite \textit{S.-B. Hsu} et al., Taiwanese J. Math. 23, No. 2, 351--373 (2019; Zbl 1415.34089) Full Text: DOI Euclid
Wang, Feng-Bin; Hsu, Sze-Bi A survey of mathematical models with variable quotas. (English) Zbl 1414.92216 Taiwanese J. Math. 23, No. 2, 269-291 (2019). MSC: 92D40 92C40 35Q92 PDF BibTeX XML Cite \textit{F.-B. Wang} and \textit{S.-B. Hsu}, Taiwanese J. Math. 23, No. 2, 269--291 (2019; Zbl 1414.92216) Full Text: DOI Euclid
Zhao, Dianli; Liu, Haidong Coexistence in a two species chemostat model with Markov switchings. (English) Zbl 1411.92262 Appl. Math. Lett. 94, 266-271 (2019). MSC: 92D25 92D40 PDF BibTeX XML Cite \textit{D. Zhao} and \textit{H. Liu}, Appl. Math. Lett. 94, 266--271 (2019; Zbl 1411.92262) Full Text: DOI
Pinky, Lubna; González-Parra, Gilberto; Dobrovolny, Hana M. Superinfection and cell regeneration can lead to chronic viral coinfections. (English) Zbl 1411.92178 J. Theor. Biol. 466, 24-38 (2019). MSC: 92C60 92C37 PDF BibTeX XML Cite \textit{L. Pinky} et al., J. Theor. Biol. 466, 24--38 (2019; Zbl 1411.92178) Full Text: DOI
Cintra, W.; Morales-Rodrigo, C.; Suárez, A. Unilateral global bifurcation for a class of quasilinear elliptic systems and applications. (English) Zbl 1423.35025 J. Differ. Equations 267, No. 1, 619-657 (2019). Reviewer: Guowei Dai (Dalian) MSC: 35B32 35J57 35J62 47J15 47A13 92D25 35J87 35Q92 PDF BibTeX XML Cite \textit{W. Cintra} et al., J. Differ. Equations 267, No. 1, 619--657 (2019; Zbl 1423.35025) Full Text: DOI
Lemarre, Paul; Pujo-Menjouet, Laurent; Sindi, Suzanne S. Generalizing a mathematical model of prion aggregation allows strain coexistence and co-stability by including a novel misfolded species. (English) Zbl 1411.92234 J. Math. Biol. 78, No. 1-2, 465-495 (2019). MSC: 92D20 34D20 PDF BibTeX XML Cite \textit{P. Lemarre} et al., J. Math. Biol. 78, No. 1--2, 465--495 (2019; Zbl 1411.92234) Full Text: DOI
Ruan, W. H.; Feng, Wei; Lu, Xin Wavefront solutions of quasilinear reaction-diffusion systems with mixed quasi-monotonicity. (English) Zbl 1408.35084 Appl. Anal. 98, No. 5, 934-968 (2019). MSC: 35K57 35Q92 35C07 35K59 92D25 PDF BibTeX XML Cite \textit{W. H. Ruan} et al., Appl. Anal. 98, No. 5, 934--968 (2019; Zbl 1408.35084) Full Text: DOI
Wang, Yuanshi Dynamics of a plant-nectar-pollinator model and its approximate equations. (English) Zbl 1409.92273 Math. Biosci. 307, 42-52 (2019). MSC: 92D40 92D25 92C80 PDF BibTeX XML Cite \textit{Y. Wang}, Math. Biosci. 307, 42--52 (2019; Zbl 1409.92273) Full Text: DOI
Shan, Chunhua; Huang, Qihua Direct and indirect effects of toxins on competition dynamics of species in an aquatic environment. (English) Zbl 1409.92271 J. Math. Biol. 78, No. 3, 739-766 (2019). MSC: 92D40 92D25 34C23 PDF BibTeX XML Cite \textit{C. Shan} and \textit{Q. Huang}, J. Math. Biol. 78, No. 3, 739--766 (2019; Zbl 1409.92271) Full Text: DOI
Wang, Yuanshi; Wu, Hong; DeAngelis, Donald L. Global dynamics of a mutualism-competition model with one resource and multiple consumers. (English) Zbl 1410.34142 J. Math. Biol. 78, No. 3, 683-710 (2019). MSC: 34C60 34C12 37N25 34C28 34D05 92D25 34C23 34D23 PDF BibTeX XML Cite \textit{Y. Wang} et al., J. Math. Biol. 78, No. 3, 683--710 (2019; Zbl 1410.34142) Full Text: DOI