×

Nonparametric shape-restricted regression. (English) Zbl 1407.62135

Summary: We consider the problem of nonparametric regression under shape constraints. The main examples include isotonic regression (with respect to any partial order), unimodal/convex regression, additive shape-restricted regression and constrained single index model. We review some of the theoretical properties of the least squares estimator (LSE) in these problems, emphasizing on the adaptive nature of the LSE. In particular, we study the behavior of the risk of the LSE, and its pointwise limiting distribution theory, with special emphasis to isotonic regression. We survey various methods for constructing pointwise confidence intervals around these shape-restricted functions. We also briefly discuss the computation of the LSE and indicate some open research problems and future directions.

MSC:

62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference

Software:

scar; coneproj; simest
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Abrevaya, J. and Huang, J. (2005). On the bootstrap of the maximum score estimator. Econometrica73 1175-1204. · Zbl 1152.62337
[2] Aït-Sahalia, Y. and Duarte, J. (2003). Nonparametric option pricing under shape restrictions. frontiers of financial econometrics and financial engineering. J. Econometrics116 9-47. · Zbl 1016.62121
[3] Amelunxen, D., Lotz, M., McCoy, M. B. and Tropp, J. A. (2014). Living on the edge: Phase transitions in convex programs with random data. Inf. Inference3 224-294. · Zbl 1339.90251
[4] Anevski, D. and Hössjer, O. (2006). A general asymptotic scheme for inference under order restrictions. Ann. Statist.34 1874-1930. · Zbl 1246.62019
[5] Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T. and Silverman, E. (1955). An empirical distribution function for sampling with incomplete information. Ann. Math. Stat.26 641-647. · Zbl 0066.38502
[6] Bacchetti, P. (1989). Additive isotonic models. J. Amer. Statist. Assoc.84 289-294.
[7] Bagchi, P., Banerjee, M. and Stoev, S. A. (2016). Inference for monotone functions under short- and long-range dependence: Confidence intervals and new universal limits. J. Amer. Statist. Assoc.111 1634-1647.
[8] Balabdaoui, F. (2007). Consistent estimation of a convex density at the origin. Math. Methods Statist.16 77-95. · Zbl 1283.62073
[9] Balabdaoui, F., Durot, C. and Jankowski, H. (2016). Least squares estimation in the monotone single index model. Preprint. Available at arXiv:1610.06026. · Zbl 1433.62108
[10] Balabdaoui, F., Jankowski, H., Pavlides, M., Seregin, A. and Wellner, J. (2011). On the Grenander estimator at zero. Statist. Sinica21 873-899. · Zbl 1214.62037
[11] Balabdaoui, F., Rufibach, K. and Wellner, J. A. (2009). Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Statist.37 1299-1331. · Zbl 1160.62008
[12] Banerjee, M. (2007). Likelihood based inference for monotone response models. Ann. Statist.35 931-956. · Zbl 1133.62328
[13] Banerjee, M. (2009). Inference in exponential family regression models under certain shape constraints using inversion based techniques. In Advances in Multivariate Statistical Methods. Stat. Sci. Interdiscip. Res.4 249-271. World Sci. Publ., Hackensack, NJ.
[14] Banerjee, M. and Wellner, J. A. (2001). Likelihood ratio tests for monotone functions. Ann. Statist.29 1699-1731. · Zbl 1043.62037
[15] Banerjee, M. and Wellner, J. A. (2005). Confidence intervals for current status data. Scand. J. Stat.32 405-424. · Zbl 1087.62107
[16] Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Inference Under Order Restrictions. The Theory and Application of Isotonic Regression. Wiley, London. · Zbl 0246.62038
[17] Bellec, P. C. (2016). Adaptive confidence sets in shape restricted regression. Preprint. Available at arXiv:1601.05766. · Zbl 1465.62074
[18] Bellec, P. C. (2018). Sharp oracle inequalities for least squares estimators in shape restricted regression. Ann. Statist.46 745-780. · Zbl 1408.62066
[19] Bertsekas, D. P. (2003). Convex Analysis and Optimization. Athena Scientific, Belmont, MA. · Zbl 1140.90001
[20] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge Univ. Press, Cambridge. · Zbl 1058.90049
[21] Breiman, L. and Friedman, J. H. (1985). Estimating optimal transformations for multiple regression and correlation. J. Amer. Statist. Assoc.80 580-619. · Zbl 0594.62044
[22] Brunk, H. D. (1955). Maximum likelihood estimates of monotone parameters. Ann. Math. Stat.26 607-616. · Zbl 0066.38503
[23] Brunk, H. D. (1970). Estimation of isotonic regression. In Nonparametric Techniques in Statistical Inference (Proc. Sympos., Indiana Univ., Bloomington, Ind., 1969) 177-197. Cambridge Univ. Press, London.
[24] Carolan, C. and Dykstra, R. (1999). Asymptotic behavior of the Grenander estimator at density flat regions. Canad. J. Statist.27 557-566. · Zbl 0949.62035
[25] Chatterjee, S. (2014). A new perspective on least squares under convex constraint. Ann. Statist.42 2340-2381. · Zbl 1302.62053
[26] Chatterjee, S. (2016). An improved global risk bound in concave regression. Electron. J. Stat.10 1608-1629. · Zbl 1349.62126
[27] Chatterjee, S., Guntuboyina, A. and Sen, B. (2015). On risk bounds in isotonic and other shape restricted regression problems. Ann. Statist.43 1774-1800. · Zbl 1317.62032
[28] Chatterjee, S., Guntuboyina, A. and Sen, B. (2018). On matrix estimation under monotonicity constraints. Bernoulli24 1072-1100. Preprint. Available at arXiv:1506.03430. · Zbl 1419.62135
[29] Chatterjee, S. and Lafferty, J. (2015). Adaptive risk bounds in unimodal regression. Preprint. Available at arXiv:1512.02956. · Zbl 1441.62097
[30] Chatterjee, S. and Lafferty, J. (2018). Denoising flows on trees. IEEE Trans. Inform. Theory64 1767-1783. Preprint. Available at arXiv:1602.08048. · Zbl 1390.94958
[31] Chatterjee, S. and Mukherjee, S. (2017). On estimation in tournaments and graphs under monotonicity constraints. Preprint. Available at arXiv:1603.04556. · Zbl 1432.62160
[32] Chen, X., Guntuboyina, A. and Zhang, Y. (2017). A note on the approximate admissibility of regularized estimators in the Gaussian sequence model. Electron. J. Stat.11 4746-4768. Preprint. Available at arXiv:1703.00542. · Zbl 1477.62134
[33] Chen, X., Lin, Q. and Sen, B. (2015). On degrees of freedom of projection estimators with applications to multivariate shape restricted regression. Preprint. Available at arXiv:1509.01877.
[34] Chen, Y. and Samworth, R. J. (2016). Generalized additive and index models with shape constraints. J. R. Stat. Soc. Ser. B. Stat. Methodol.78 729-754. · Zbl 1414.62153
[35] Chernoff, H. (1964). Estimation of the mode. Ann. Inst. Statist. Math.16 31-41. · Zbl 0212.21802
[36] Cui, X., Härdle, W. K. and Zhu, L. (2011). The EFM approach for single-index models. Ann. Statist.39 1658-1688. · Zbl 1221.62062
[37] Demetriou, I. and Tzitziris, P. (2017). Infant mortality and economic growth: Modeling by increasing returns and least squares. In Proceedings of the World Congress on Engineering2.
[38] Doss, C. R. and Wellner, J. A. (2016). Inference for the mode of a log-concave density. Preprint. Available at arXiv:1611.10348. · Zbl 1439.62098
[39] Doss, C. R. and Wellner, J. A. (2016). Mode-constrained estimation of a log-concave density. Preprint. Available at arXiv:1611.10335.
[40] Dümbgen, L. (2003). Optimal confidence bands for shape-restricted curves. Bernoulli9 423-449. · Zbl 1044.62051
[41] Dümbgen, L., Freitag, S. and Jongbloed, G. (2004). Consistency of concave regression with an application to current-status data. Math. Methods Statist.13 69-81. · Zbl 1129.62033
[42] Dümbgen, L. and Spokoiny, V. G. (2001). Multiscale testing of qualitative hypotheses. Ann. Statist.29 124-152. · Zbl 1029.62070
[43] Dykstra, R. L. (1983). An algorithm for restricted least squares regression. J. Amer. Statist. Assoc.78 837-842. · Zbl 0535.62063
[44] Fang, B. and Guntuboyina, A. (2017). On the risk of convex-constrained least squares estimators under misspecification. Preprint. Available at arXiv:1706.04276. · Zbl 1466.62333
[45] Flammarion, N., Mao, C. and Rigollet, P. (2016). Optimal rates of statistical seriation. Preprint. Available at arXiv:1607.02435. · Zbl 1442.62084
[46] Fraser, D. A. S. and Massam, H. (1989). A mixed primal-dual bases algorithm for regression under inequality constraints. Application to concave regression. Scand. J. Stat.16 65-74. · Zbl 0672.62077
[47] Frisén, M. (1986). Unimodal regression. Statistician 479-485.
[48] Gao, C., Han, F. and Zhang, C.-H. (2017). Minimax risk bounds for piecewise constant models. Preprint. Available at arXiv:1705.06386.
[49] Gebhardt, F. (1970). An algorithm for monotone regression with one or more independent variables. Biometrika57 263-271. · Zbl 0196.22001
[50] Ghosal, P. and Sen, B. (2017). On univariate convex regression. Sankhyā A79 215-253. · Zbl 1380.62170
[51] Grenander, U. (1956). On the theory of mortality measurement. II. Skand. Aktuarietidskr.39 125-153 (1957). · Zbl 0077.33715
[52] Groeneboom, P. (1983). The concave majorant of Brownian motion. Ann. Probab.11 1016-1027. · Zbl 0523.60079
[53] Groeneboom, P. (1985). Estimating a monotone density. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. II (Berkeley, Calif., 1983). 539-555. Wadsworth, Belmont, CA. · Zbl 1373.62144
[54] Groeneboom, P. and Hendrickx, K. (2018). Confidence intervals for the current status model. Scand. J. Stat.45 135-163. Preprint. Available at arXiv:1611.08299. · Zbl 1393.62020
[55] Groeneboom, P. and Hendrickx, K. (2018). Current status linear regression. Ann. Statist.46 1415-1444. Available at arXiv:1601.00202. · Zbl 1403.62046
[56] Groeneboom, P. and Jongbloed, G. (1995). Isotonic estimation and rates of convergence in Wicksell’s problem. Ann. Statist.23 1518-1542. · Zbl 0843.62034
[57] Groeneboom, P. and Jongbloed, G. (2014). Nonparametric Estimation Under Shape Constraints: Estimators, Algorithms and Asymptotics. Cambridge Series in Statistical and Probabilistic Mathematics38. Cambridge Univ. Press, New York. · Zbl 1338.62008
[58] Groeneboom, P. and Jongbloed, G. (2015). Nonparametric confidence intervals for monotone functions. Ann. Statist.43 2019-2054. · Zbl 1323.62040
[59] Groeneboom, P., Jongbloed, G. and Wellner, J. A. (2001). Estimation of a convex function: Characterizations and asymptotic theory. Ann. Statist.29 1653-1698. · Zbl 1043.62027
[60] Groeneboom, P., Jongbloed, G. and Wellner, J. A. (2008). The support reduction algorithm for computing non-parametric function estimates in mixture models. Scand. J. Stat.35 385-399. · Zbl 1199.65017
[61] Groeneboom, P., Jongbloed, G. and Witte, B. I. (2010). Maximum smoothed likelihood estimation and smoothed maximum likelihood estimation in the current status model. Ann. Statist.38 352-387. · Zbl 1181.62157
[62] Groeneboom, P. and Wellner, J. A. (1992). Information Bounds and Nonparametric Maximum Likelihood Estimation. DMV Seminar19. Birkhäuser, Basel. · Zbl 0757.62017
[63] Groeneboom, P. and Wellner, J. A. (2001). Computing Chernoff’s distribution. J. Comput. Graph. Statist.10 388-400.
[64] Guntuboyina, A., Lieu, D., Chatterjee, S. and Sen, B. (2017). Spatial adaptation in trend filtering. Preprint. Available at arXiv:1702.05113. · Zbl 1439.62100
[65] Guntuboyina, A. and Sen, B. (2015). Global risk bounds and adaptation in univariate convex regression. Probab. Theory Related Fields163 379-411. · Zbl 1327.62255
[66] Guntuboyina, A. and Sen, B. (2018). Supplement to “Nonparametric Shape-Restricted Regression.” DOI:10.1214/18-STS665SUPP. · Zbl 1407.62135
[67] Han, Q., Wang, T., Chatterjee, S. and Samworth, R. J. (2017). Isotonic regression in general dimensions. Preprint. Available at arXiv:1708.09468. · Zbl 1437.62124
[68] Hanson, D. L. and Pledger, G. (1976). Consistency in concave regression. Ann. Statist.4 1038-1050. · Zbl 0341.62034
[69] Hanson, D. L., Pledger, G. and Wright, F. T. (1973). On consistency in monotonic regression. Ann. Statist.1 401-421. · Zbl 0259.62037
[70] Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Monographs on Statistics and Applied Probability43. CRC Press, London. · Zbl 0747.62061
[71] Hildreth, C. (1954). Point estimates of ordinates of concave functions. J. Amer. Statist. Assoc.49 598-619. · Zbl 0056.38301
[72] Hu, J., Kapoor, M., Zhang, W., Hamilton, S. R. and Coombes, K. R. (2005). Analysis of dose-response effects on gene expression data with comparison of two microarray platforms. Bioinformatics21 3524-3529.
[73] Huang, J. and Wellner, J. A. (1995). Estimation of a monotone density or monotone hazard under random censoring. Scand. J. Stat.22 3-33. · Zbl 0827.62032
[74] Huang, J. and Wellner, J. A. (1997). Interval censored survival data: A review of recent progress. In Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis (D. Y. Lin and T. R. Fleming, eds.) 123-169. · Zbl 0916.62077
[75] Jongbloed, G. and van der Meulen, F. H. (2009). Estimating a concave distribution function from data corrupted with additive noise. Ann. Statist.37 782-815. · Zbl 1162.62029
[76] Kakade, S. M., Kanade, V., Shamir, O. and Kalai, A. (2011). Efficient learning of generalized linear and single index models with isotonic regression. In Advances in Neural Information Processing Systems 927-935.
[77] Keshavarz, A., Wang, Y. and Boyd, S. (2011). Imputing a convex objective function. In Intelligent Control (ISIC), 2011 IEEE International Symposium on 613-619. IEEE.
[78] Kosorok, M. R. (2008). Bootstrapping in Grenander estimator. In Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of Professor Pranab K. Sen. Inst. Math. Stat. (IMS) Collect.1 282-292. IMS, Beachwood, OH.
[79] Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika29 1-27. · Zbl 0123.36803
[80] Kuchibhotla, A. K., Patra, R. K. and Sen, B. (2017). Efficient estimation in convex single index models. Preprint. Available at arXiv:1708.00145.
[81] Kulikov, V. N. and Lopuhaä, H. P. (2006). The behavior of the NPMLE of a decreasing density near the boundaries of the support. Ann. Statist.34 742-768. · Zbl 1092.62044
[82] Kuosmanen, T. (2008). Representation theorem for convex nonparametric least squares. Econom. J.11 308-325. · Zbl 1141.91640
[83] Kyng, R., Rao, A. and Sachdeva, S. (2015). Fast, provable algorithms for isotonic regression in all \(l-p\)-norms. In Advances in Neural Information Processing Systems 2719-2727.
[84] Leurgans, S. (1982). Asymptotic distributions of slope-of-greatest-convex-minorant estimators. Ann. Statist.10 287-296. · Zbl 0484.62033
[85] Li, K.-C. and Duan, N. (1989). Regression analysis under link violation. Ann. Statist.17 1009-1052. · Zbl 0753.62041
[86] Li, Q. and Racine, J. S. (2007). Nonparametric Econometrics: Theory and Practice. Princeton Univ. Press, Princeton, NJ. · Zbl 1183.62200
[87] Luss, R., Rosset, S. and Shahar, M. (2012). Efficient regularized isotonic regression with application to gene-gene interaction search. Ann. Appl. Stat.6 253-283. · Zbl 1235.62046
[88] Magnani, A. and Boyd, S. P. (2009). Convex piecewise-linear fitting. Optim. Eng.10 1-17. · Zbl 1273.65086
[89] Mammen, E. (1991). Estimating a smooth monotone regression function. Ann. Statist.19 724-740. · Zbl 0737.62038
[90] Mammen, E. (1991). Nonparametric regression under qualitative smoothness assumptions. Ann. Statist.19 741-759. · Zbl 0737.62039
[91] Mammen, E., Linton, O. and Nielsen, J. (1999). The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Ann. Statist.27 1443-1490. · Zbl 0986.62028
[92] Mammen, E. and Thomas-Agnan, C. (1999). Smoothing splines and shape restrictions. Scand. J. Stat.26 239-252. · Zbl 0932.62051
[93] Mammen, E. and Yu, K. (2007). Additive isotone regression. In Asymptotics: Particles, Processes and Inverse Problems. Institute of Mathematical Statistics Lecture Notes—Monograph Series55 179-195. IMS, Beachwood, OH. · Zbl 1176.62035
[94] Mammen, E. and Yu, K. (2007). Additive isotone regression. In Asymptotics: Particles, Processes and Inverse Problems. Institute of Mathematical Statistics Lecture Notes—Monograph Series55 179-195. IMS, Beachwood, OH. · Zbl 1176.62035
[95] Marshall, A. W., Olkin, I. and Arnold, B. C. (2011). Inequalities: Theory of Majorization and Its Applications, 2nd ed. Springer, New York. · Zbl 1219.26003
[96] Matzkin, R. L. (1991). Semiparametric estimation of monotone and concave utility functions for polychotomous choice models. Econometrica59 1315-1327. · Zbl 0781.90009
[97] Mazumder, R., Choudhury, A., Iyengar, G. and Sen, B. (2015). A computational framework for multivariate convex regression and its variants. J. Amer. Statist. Assoc. To appear. Preprint. Available at arXiv:1509.08165. · Zbl 1418.62122
[98] Meyer, M. and Woodroofe, M. (2000). On the degrees of freedom in shape-restricted regression. Ann. Statist.28 1083-1104. · Zbl 1105.62340
[99] Meyer, M. C. (1999). An extension of the mixed primal-dual bases algorithm to the case of more constraints than dimensions. J. Statist. Plann. Inference81 13-31. · Zbl 1057.62510
[100] Meyer, M. C. (2008). Inference using shape-restricted regression splines. Ann. Appl. Stat.2 1013-1033. · Zbl 1149.62033
[101] Meyer, M. C. (2013). Semi-parametric additive constrained regression. J. Nonparametr. Stat.25 715-730. · Zbl 1416.62223
[102] Meyer, M. C. (2013). A simple new algorithm for quadratic programming with applications in statistics. Comm. Statist. Simulation Comput.42 1126-1139. · Zbl 1347.62013
[103] Mukerjee, H. (1988). Monotone nonparameteric regression. Ann. Statist.16 741-750. · Zbl 0647.62042
[104] Murphy, S. A., van der Vaart, A. W. and Wellner, J. A. (1999). Current status regression. Math. Methods Statist.8 407-425. · Zbl 1033.62021
[105] Nemirovskiĭ, A. S., Polyak, B. T. and Tsybakov, A. B. (1985). The rate of convergence of nonparametric estimates of maximum likelihood type. Problemy Peredachi Informatsii21 17-33.
[106] Newey, W. K. (1990). Semiparametric efficiency bounds. J. Appl. Econometrics5 99-135. · Zbl 0705.62033
[107] Obozinski, G., Lanckriet, G., Grant, C., Jordan, M. I. and Noble, W. S. (2008). Consistent probabilistic outputs for protein function prediction. Genome Biol.9 S6.
[108] Oymak, S. and Hassibi, B. (2016). Sharp MSE bounds for proximal denoising. Found. Comput. Math.16 965-1029. · Zbl 1380.90221
[109] Powell, J. L., Stock, J. H. and Stoker, T. M. (1989). Semiparametric estimation of index coefficients. Econometrica57 1403-1430. · Zbl 0683.62070
[110] Prakasa Rao, B. L. S. (1969). Estimation of a unimodal density. Sankhyā Ser. A31 23-36. · Zbl 0181.45901
[111] Pya, N. and Wood, S. N. (2015). Shape constrained additive models. Stat. Comput.25 543-559. · Zbl 1331.62367
[112] Robertson, T. and Wright, F. T. (1975). Consistency in generalized isotonic regression. Ann. Statist.3 350-362. · Zbl 0305.62044
[113] Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference. Wiley, Chichester. · Zbl 0645.62028
[114] Rockafellar, R. T. (1970). Convex Analysis. Princeton Mathematical Series28. Princeton Univ. Press, Princeton, NJ. · Zbl 0193.18401
[115] Schrijver, A. (1986). Theory of Linear and Integer Programming. Wiley, Chichester. · Zbl 0665.90063
[116] Seijo, E. and Sen, B. (2011). Nonparametric least squares estimation of a multivariate convex regression function. Ann. Statist.39 1633-1657. · Zbl 1220.62044
[117] Sen, B., Banerjee, M. and Woodroofe, M. (2010). Inconsistency of bootstrap: The Grenander estimator. Ann. Statist.38 1953-1977. · Zbl 1202.62057
[118] Sen, B. and Meyer, M. (2017). Testing against a linear regression model using ideas from shape-restricted estimation. J. R. Stat. Soc. Ser. B. Stat. Methodol.79 423-448. · Zbl 1414.62148
[119] Sen, B. and Woodroofe, M. (2012). Bootstrap confidence intervals for isotonic estimators in a stereological problem. Bernoulli18 1249-1266. · Zbl 1329.62177
[120] Sen, B. and Xu, G. (2015). Model based bootstrap methods for interval censored data. Comput. Statist. Data Anal.81 121-129. · Zbl 1507.62153
[121] Shah, N. B., Balakrishnan, S., Guntuboyina, A. and Wainwright, M. J. (2017). Stochastically transitive models for pairwise comparisons: Statistical and computational issues. IEEE Trans. Inform. Theory63 934-959. · Zbl 1364.94253
[122] Shapiro, A., Dentcheva, D. and Ruszczyński, A. (2009). Lectures on Stochastic Programming: Modeling and Theory. MPS/SIAM Series on Optimization9. SIAM, Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, PA. · Zbl 1183.90005
[123] Simchi-Levi, D., Chen, X. and Bramel, J. (2005). The Logic of Logistics: Theory, Algorithms, and Applications for Logistics and Supply Chain Management, 2nd ed. Springer, New York. · Zbl 1178.90046
[124] Slawski, M. and Hein, M. (2013). Non-negative least squares for high-dimensional linear models: Consistency and sparse recovery without regularization. Electron. J. Stat.7 3004-3056. · Zbl 1280.62086
[125] Stout, Q. F. (2008). Unimodal regression via prefix isotonic regression. Comput. Statist. Data Anal.53 289-297. · Zbl 1231.62073
[126] Stout, Q. F. (2015). Isotonic regression for multiple independent variables. Algorithmica71 450-470. · Zbl 1312.62084
[127] Talagrand, M. (2014). Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems. 60. Springer, Heidelberg. · Zbl 1293.60001
[128] Tukey, J. W. (1961). Curves as parameters, and touch estimation. In Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. I 681-694. Univ. California Press, Berkeley, CA. · Zbl 0105.12304
[129] van Eeden, C. (1956). Maximum likelihood estimation of ordered probabilities. Indag. Math. (N.S.) 18 444-455. · Zbl 0086.12802
[130] van de Geer, S. (1990). Estimating a regression function. Ann. Statist.18 907-924. · Zbl 0709.62040
[131] van de Geer, S. and Wainwright, M. J. (2017). On concentration for (regularized) empirical risk minimization. Sankhya A79 159-200. · Zbl 1380.62085
[132] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes: With Applications to Statistics. Springer, New York. · Zbl 0862.60002
[133] Varian, H. R. (1984). The nonparametric approach to production analysis. Econometrica52 579-597. · Zbl 0558.90024
[134] Wei, Y., Wainwright, M. J. and Guntuboyina, A. (2017). The geometry of hypothesis testing over convex cones: Generalized likelihood tests and minimax radii. Preprint. Available at arXiv:1703.06810. · Zbl 1415.62006
[135] Woodroofe, M. and Sun, J. (1993). A penalized maximum likelihood estimate of \(f(0+)\) when \(f\) is nonincreasing. Statist. Sinica3 501-515. · Zbl 0822.62020
[136] Wright, F. T. (1981). The asymptotic behavior of monotone regression estimates. Ann. Statist.9 443-448. · Zbl 0471.62062
[137] Wu, J., Meyer, M. C. and Opsomer, J. D. (2015). Penalized isotonic regression. J. Statist. Plann. Inference161 12-24. · Zbl 1311.62096
[138] Yang, F. and Barber, R. F. (2017). Contraction and uniform convergence of isotonic regression. Preprint. Available at arXiv:1706.01852. · Zbl 1478.62098
[139] Yatchew, A. (2003). Semiparametric Regression for the Applied Econometrician. Cambridge Univ. Press, Cambridge. · Zbl 1067.62041
[140] Zhang, C.-H. (2002). Risk bounds in isotonic regression. Ann. Statist.30 528-555. · Zbl 1012.62045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.