×

Precise and accurate cosmology with CMB\(\times\)LSS power spectra and bispectra. (English) Zbl 1485.85003

Summary: With the advent of a new generation of cosmological experiments that will provide high-precision measurements of the cosmic microwave background (CMB) and galaxies in the large-scale structure, it is pertinent to examine the potential of performing a joint analysis of multiple cosmological probes. In this paper, we study the cosmological information content contained in the one-loop power spectra and tree bispectra of galaxies cross-correlated with CMB lensing. We use the FFTLog method to compute angular correlations in spherical harmonic space, applicable for wide angles that can be accessed by forthcoming galaxy surveys. We find that adding the bispectra and cross-correlations with CMB lensing offers a significant improvement in parameter constraints, including those on the total neutrino mass, \(M_\nu\), and local non-Gaussianity amplitude, \(f_{\mathrm{NL}}\). In particular, our results suggest that the combination of the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) and CMB-S4 will be able to achieve \(\sigma(M_\nu)=42\) meV from galaxy and CMB lensing correlations, and \(\sigma(M_\nu)=12\) meV when further combined with the CMB temperature and polarization data, without any prior on the optical depth.

MSC:

85A15 Galactic and stellar structure
83F05 Relativistic cosmology
81V15 Weak interaction in quantum theory
78A45 Diffraction, scattering
81V80 Quantum optics
70M20 Orbital mechanics
62H20 Measures of association (correlation, canonical correlation, etc.)
80A10 Classical and relativistic thermodynamics

Software:

GetDist; CAMB; FAST-PT
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Lewis, Antony; Challinor, Anthony, Weak gravitational lensing of the CMB, Phys. Rept., 429, 1-65 (2006) · doi:10.1016/j.physrep.2006.03.002
[2] Planck Collaboration; Aghanim, N., Planck 2018 results. VIII. Gravitational lensing, Astron. Astrophys., 641, A8 (2020) · doi:10.1051/0004-6361/201833886
[3] CMB-S4 Collaboration; Abazajian, Kevork N., CMB-S4 Science Book, First Edition (2016)
[4] Abazajian, Kevork, CMB-S4 Science Case, Reference Design, and Project Plan (2019)
[5] LSST Science, LSST Project Collaboration; Abell, Paul A., LSST Science Book, Version 2.0 (2009)
[6] Maltoni, M.; Schwetz, T.; Tortola, M. A.; Valle, J. W. F., Status of global fits to neutrino oscillations, New J. Phys., 6, 122 (2004) · doi:10.1088/1367-2630/6/1/122
[7] Planck Collaboration; Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6 (2020) · doi:10.1051/0004-6361/201833910
[8] Planck Collaboration; Akrami, Y., Planck 2018 results. IX. Constraints on primordial non-Gaussianity, Astron. Astrophys., 641, A9 (2020) · doi:10.1051/0004-6361/201935891
[9] Alvarez, Marcelo, Testing Inflation with Large Scale Structure: Connecting Hopes with Reality (2014)
[10] Limber, D. Nelson, The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II, Astrophys. J., 119, 655 (1954) · doi:10.1086/145870
[11] Hamilton, A. J. S., Uncorrelated modes of the nonlinear power spectrum, Mon. Not. Roy. Astron. Soc., 312, 257-284 (2000) · doi:10.1046/j.1365-8711.2000.03071.x
[12] McEwen, Joseph E.; Fang, Xiao; Hirata, Christopher M.; Blazek, Jonathan A., FAST-PT: a novel algorithm to calculate convolution integrals in cosmological perturbation theory, JCAP, 09 (2016) · Zbl 1515.83006 · doi:10.1088/1475-7516/2016/09/015
[13] Schmittfull, Marcel; Vlah, Zvonimir; McDonald, Patrick, Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.103528
[14] Schmittfull, Marcel; Vlah, Zvonimir, FFT-PT: Reducing the two-loop large-scale structure power spectrum to low-dimensional radial integrals, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.103530
[15] Simonović, Marko; Baldauf, Tobias; Zaldarriaga, Matias; Carrasco, John Joseph; Kollmeier, Juna A., Cosmological perturbation theory using the FFTLog: formalism and connection to QFT loop integrals, JCAP, 04 (2018) · Zbl 07458866 · doi:10.1088/1475-7516/2018/04/030
[16] Assassi, Valentin; Simonović, Marko; Zaldarriaga, Matias, Efficient evaluation of angular power spectra and bispectra, JCAP, 11 (2017) · doi:10.1088/1475-7516/2017/11/054
[17] Grasshorn Gebhardt, Henry S.; Jeong, Donghui, Fast and accurate computation of projected two-point functions, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.023504
[18] Schöneberg, Nils; Simonović, Marko; Lesgourgues, Julien; Zaldarriaga, Matias, Beyond the traditional Line-of-Sight approach of cosmological angular statistics, JCAP, 10 (2018) · Zbl 07462572 · doi:10.1088/1475-7516/2018/10/047
[19] Fang, Xiao; Krause, Elisabeth; Eifler, Tim; MacCrann, Niall, Beyond Limber: Efficient computation of angular power spectra for galaxy clustering and weak lensing, JCAP, 05 (2020) · Zbl 1491.83020 · doi:10.1088/1475-7516/2020/05/010
[20] Lee, Hayden; Dvorkin, Cora, Cosmological Angular Trispectra and Non-Gaussian Covariance, JCAP, 05 (2020) · Zbl 1492.85019 · doi:10.1088/1475-7516/2020/05/044
[21] Schmittfull, Marcel; Seljak, Uros, Parameter constraints from cross-correlation of CMB lensing with galaxy clustering, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.123540
[22] Yu, Byeonghee; Knight, Robert Z.; Sherwin, Blake D.; Ferraro, Simone; Knox, Lloyd; Schmittfull, Marcel, Towards Neutrino Mass from Cosmology without Optical Depth Information (2018)
[23] Bernardeau, F.; Colombi, S.; Gaztanaga, E.; Scoccimarro, R., Large scale structure of the universe and cosmological perturbation theory, Phys. Rept., 367, 1-248 (2002) · Zbl 0996.85005 · doi:10.1016/S0370-1573(02)00135-7
[24] Blas, Diego; Garny, Mathias; Konstandin, Thomas; Lesgourgues, Julien, Structure formation with massive neutrinos: going beyond linear theory, JCAP, 11 (2014) · doi:10.1088/1475-7516/2014/11/039
[25] Donath, Yaniv; Senatore, Leonardo, Biased Tracers in Redshift Space in the EFTofLSS with exact time dependence, JCAP, 10 (2020) · Zbl 1494.83004 · doi:10.1088/1475-7516/2020/10/039
[26] Fry, James N., The Galaxy correlation hierarchy in perturbation theory, Astrophys. J., 279, 499-510 (1984) · doi:10.1086/161913
[27] Goroff, M. H.; Grinstein, Benjamin; Rey, S. J.; Wise, Mark B., Coupling of Modes of Cosmological Mass Density Fluctuations, Astrophys. J., 311, 6-14 (1986) · doi:10.1086/164749
[28] Jain, Bhuvnesh; Bertschinger, Edmund, Second order power spectrum and nonlinear evolution at high redshift, Astrophys. J., 431, 495 (1994) · doi:10.1086/174502
[29] Dvorkin, Cora, Neutrino Mass from Cosmology: Probing Physics Beyond the Standard Model (2019)
[30] LoVerde, Marilena, Halo bias in mixed dark matter cosmologies, Phys. Rev. D, 90 (2014) · doi:10.1103/PhysRevD.90.083530
[31] Vagnozzi, Sunny; Brinckmann, Thejs; Archidiacono, Maria; Freese, Katherine; Gerbino, Martina; Lesgourgues, Julien, Bias due to neutrinos must not uncorrect’d go, JCAP, 09 (2018) · doi:10.1088/1475-7516/2018/09/001
[32] Muñoz, Julian B.; Dvorkin, Cora, Efficient Computation of Galaxy Bias with Neutrinos and Other Relics, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.043503
[33] Xu, Weishuang Linda; DePorzio, Nicholas; Muñoz, Julian B.; Dvorkin, Cora, Accurately Weighing Neutrinos with Cosmological Surveys, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.023503
[34] Lesgourgues, Julien; Pastor, Sergio, Massive neutrinos and cosmology, Phys. Rept., 429, 307-379 (2006) · doi:10.1016/j.physrep.2006.04.001
[35] Senatore, Leonardo; Zaldarriaga, Matias, The Effective Field Theory of Large-Scale Structure in the presence of Massive Neutrinos (2017) · Zbl 1294.83099
[36] Hu, Wayne; Eisenstein, Daniel J., Small scale perturbations in a general MDM cosmology, Astrophys. J., 498, 497 (1998) · doi:10.1086/305585
[37] Takada, Masahiro; Komatsu, Eiichiro; Futamase, Toshifumi, Cosmology with high-redshift galaxy survey: neutrino mass and inflation, Phys. Rev. D, 73 (2006) · doi:10.1103/PhysRevD.73.083520
[38] Desjacques, Vincent; Jeong, Donghui; Schmidt, Fabian, Large-Scale Galaxy Bias, Phys. Rept., 733, 1-193 (2018) · Zbl 1392.83093 · doi:10.1016/j.physrep.2017.12.002
[39] Baumann, Daniel; Nicolis, Alberto; Senatore, Leonardo; Zaldarriaga, Matias, Cosmological Non-Linearities as an Effective Fluid, JCAP, 07 (2012) · doi:10.1088/1475-7516/2012/07/051
[40] Carrasco, John Joseph M.; Hertzberg, Mark P.; Senatore, Leonardo, The Effective Field Theory of Cosmological Large Scale Structures, JHEP, 09, 082 (2012) · Zbl 1397.83211 · doi:10.1007/JHEP09(2012)082
[41] Berlind, Andreas A.; Weinberg, David H., The Halo occupation distribution: Towards an empirical determination of the relation between galaxies and mass, Astrophys. J., 575, 587-616 (2002) · doi:10.1086/341469
[42] McDonald, Patrick, Clustering of dark matter tracers: Renormalizing the bias parameters, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.129901
[43] Chan, Kwan Chuen; Scoccimarro, Roman; Sheth, Ravi K., Gravity and Large-Scale Non-local Bias, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.083509
[44] Assassi, Valentin; Baumann, Daniel; Green, Daniel; Zaldarriaga, Matias, Renormalized Halo Bias, JCAP, 08 (2014) · doi:10.1088/1475-7516/2014/08/056
[45] Senatore, Leonardo, Bias in the Effective Field Theory of Large Scale Structures, JCAP, 11 (2015) · doi:10.1088/1475-7516/2015/11/007
[46] Chudaykin, Anton; Ivanov, Mikhail M., Measuring neutrino masses with large-scale structure: Euclid forecast with controlled theoretical error, JCAP, 11 (2019) · doi:10.1088/1475-7516/2019/11/034
[47] de Belsunce, Roger; Senatore, Leonardo, Tree-Level Bispectrum in the Effective Field Theory of Large-Scale Structure extended to Massive Neutrinos, JCAP, 02 (2019) · Zbl 07484851 · doi:10.1088/1475-7516/2019/02/038
[48] Schmidt, Fabian; Kamionkowski, Marc, Halo Clustering with Non-Local Non-Gaussianity, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.103002
[49] Scoccimarro, Roman; Hui, Lam; Manera, Marc; Chan, Kwan Chuen, Large-scale Bias and Efficient Generation of Initial Conditions for Non-Local Primordial Non-Gaussianity, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.083002
[50] Assassi, Valentin; Baumann, Daniel; Schmidt, Fabian, Galaxy Bias and Primordial Non-Gaussianity, JCAP, 12 (2015) · doi:10.1088/1475-7516/2015/12/043
[51] Arkani-Hamed, Nima; Maldacena, Juan, Cosmological Collider Physics (2015)
[52] Lee, Hayden; Baumann, Daniel; Pimentel, Guilherme L., Non-Gaussianity as a Particle Detector, JHEP, 12, 040 (2016) · Zbl 1390.83465 · doi:10.1007/JHEP12(2016)040
[53] Arkani-Hamed, Nima; Baumann, Daniel; Lee, Hayden; Pimentel, Guilherme L., The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities, JHEP, 04, 105 (2020) · Zbl 1436.85001 · doi:10.1007/JHEP04(2020)105
[54] Moradinezhad Dizgah, Azadeh; Lee, Hayden; Muñoz, Julian B.; Dvorkin, Cora, Galaxy Bispectrum from Massive Spinning Particles, JCAP, 05 (2018) · doi:10.1088/1475-7516/2018/05/013
[55] Dalal, Neal; Dore, Olivier; Huterer, Dragan; Shirokov, Alexander, The imprints of primordial non-gaussianities on large-scale structure: scale dependent bias and abundance of virialized objects, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.123514
[56] Gleyzes, Jérôme; de Putter, Roland; Green, Daniel; Doré, Olivier, Biasing and the search for primordial non-Gaussianity beyond the local type, JCAP, 04 (2017) · Zbl 1515.85032 · doi:10.1088/1475-7516/2017/04/002
[57] Moradinezhad Dizgah, Azadeh; Dvorkin, Cora, Scale-Dependent Galaxy Bias from Massive Particles with Spin during Inflation, JCAP, 01 (2018) · Zbl 1527.85008 · doi:10.1088/1475-7516/2018/01/010
[58] Kaiser, N., Clustering in real space and in redshift space, Mon. Not. Roy. Astron. Soc., 227, 1-27 (1987)
[59] Hernández, Oscar F., Neutrino Masses, Scale-Dependent Growth, and Redshift-Space Distortions, JCAP, 06 (2017) · doi:10.1088/1475-7516/2017/06/018
[60] Boyle, Aoife; Komatsu, Eiichiro, Deconstructing the neutrino mass constraint from galaxy redshift surveys, JCAP, 03 (2018) · doi:10.1088/1475-7516/2018/03/035
[61] Yoo, Jaiyul; Fitzpatrick, A. Liam; Zaldarriaga, Matias, A New Perspective on Galaxy Clustering as a Cosmological Probe: General Relativistic Effects, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.083514
[62] Bonvin, Camille; Durrer, Ruth, What galaxy surveys really measure, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.063505
[63] Challinor, Anthony; Lewis, Antony, The linear power spectrum of observed source number counts, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.043516
[64] Bartelmann, Matthias; Schneider, Peter, Weak gravitational lensing, Phys. Rept., 340, 291-472 (2001) · Zbl 0971.83518 · doi:10.1016/S0370-1573(00)00082-X
[65] Turner, Edwin L.; Ostriker, Jeremiah P.; Gott, J. Richard III, The Statistics of gravitational lenses: The Distributions of image angular separations and lens redshifts, Astrophys. J., 284, 1-22 (1984) · doi:10.1086/162379
[66] Villumsen, Jens Verner, Clustering of faint galaxies: omega (Theta), induced by weak gravitational lensing (1995)
[67] Hui, Lam; Gaztanaga, Enrique; LoVerde, Marilena, Anisotropic Magnification Distortion of the 3D Galaxy Correlation. 1. Real Space, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.103502
[68] Liu, Jia; Haiman, Zoltán; Hui, Lam; Kratochvil, Jan M.; May, Morgan, The Impact of Magnification and Size Bias on Weak Lensing Power Spectrum and Peak Statistics, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.023515
[69] Hu, Wayne, Angular trispectrum of the CMB, Phys. Rev. D, 64 (2001) · doi:10.1103/PhysRevD.64.083005
[70] Mitsou, Ermis; Yoo, Jaiyul; Durrer, Ruth; Scaccabarozzi, Fulvio; Tansella, Vittorio, General and consistent statistics for cosmological observations, Phys. Rev. Res., 2 (2020) · doi:10.1103/PhysRevResearch.2.033004
[71] Regan, D. M.; Shellard, E. P. S.; Fergusson, J. R., General CMB and Primordial Trispectrum Estimation, Phys. Rev. D, 82 (2010) · doi:10.1103/PhysRevD.82.023520
[72] Smith, Kendrick M.; Senatore, Leonardo; Zaldarriaga, Matias, Optimal analysis of the CMB trispectrum (2015)
[73] LoVerde, Marilena; Afshordi, Niayesh, Extended Limber Approximation, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.123506
[74] Di Dio, Enea; Durrer, Ruth; Maartens, Roy; Montanari, Francesco; Umeh, Obinna, The Full-Sky Angular Bispectrum in Redshift Space, JCAP, 04 (2019) · doi:10.1088/1475-7516/2019/04/053
[75] Lemos, Pablo; Challinor, Anthony; Efstathiou, George, The effect of Limber and flat-sky approximations on galaxy weak lensing, JCAP, 05 (2017) · Zbl 1515.83106 · doi:10.1088/1475-7516/2017/05/014
[76] Deshpande, Anurag C.; Kitching, Thomas D., Post-Limber Weak Lensing Bispectrum, Reduced Shear Correction, and Magnification Bias Correction, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.103531
[77] Bellomo, Nicola; Bernal, José Luis; Scelfo, Giulio; Raccanelli, Alvise; Verde, Licia, Beware of commonly used approximations. Part I. Errors in forecasts, JCAP, 10 (2020) · doi:10.1088/1475-7516/2020/10/016
[78] Bernal, José Luis; Bellomo, Nicola; Raccanelli, Alvise; Verde, Licia, Beware of commonly used approximations. Part II. Estimating systematic biases in the best-fit parameters, JCAP, 10 (2020) · doi:10.1088/1475-7516/2020/10/017
[79] Levi, Michele; Vlah, Zvonimir, Massive neutrinos in nonlinear large scale structure: A consistent perturbation theory (2016)
[80] Scoccimarro, Roman; Couchman, H. M. P.; Frieman, Joshua A., The Bispectrum as a Signature of Gravitational Instability in Redshift-Space, Astrophys. J., 517, 531-540 (1999) · doi:10.1086/307220
[81] Grasshorn Gebhardt, Henry S.; Jeong, Donghui, Nonlinear redshift-space distortions in the harmonic-space galaxy power spectrum, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.083521
[82] Di Dio, E.; Perrier, H.; Durrer, R.; Marozzi, G.; Moradinezhad Dizgah, A.; Noreña, J., Non-Gaussianities due to Relativistic Corrections to the Observed Galaxy Bispectrum, JCAP, 03 (2017) · Zbl 1515.83332 · doi:10.1088/1475-7516/2017/03/006
[83] Tegmark, Max, Measuring cosmological parameters with galaxy surveys, Phys. Rev. Lett., 79, 3806-3809 (1997) · doi:10.1103/PhysRevLett.79.3806
[84] Lazeyras, Titouan; Wagner, Christian; Baldauf, Tobias; Schmidt, Fabian, Precision measurement of the local bias of dark matter halos, JCAP, 02 (2016) · doi:10.1088/1475-7516/2016/02/018
[85] Ivanov, Mikhail M.; Simonović, Marko; Zaldarriaga, Matias, Cosmological Parameters from the BOSS Galaxy Power Spectrum, JCAP, 05 (2020) · doi:10.1088/1475-7516/2020/05/042
[86] D’Amico, Guido; Gleyzes, Jérôme; Kokron, Nickolas; Markovic, Katarina; Senatore, Leonardo; Zhang, Pierre, The Cosmological Analysis of the SDSS/BOSS data from the Effective Field Theory of Large-Scale Structure, JCAP, 05 (2020) · doi:10.1088/1475-7516/2020/05/005
[87] Lacasa, Fabien, Covariance of the galaxy angular power spectrum with the halo model, Astron. Astrophys., 615, A1 (2018) · doi:10.1051/0004-6361/201732343
[88] Babich, Daniel; Zaldarriaga, Matias, Primordial bispectrum information from CMB polarization, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.083005
[89] Yadav, Amit P. S.; Komatsu, Eiichiro; Wandelt, Benjamin D., Fast Estimator of Primordial Non-Gaussianity from Temperature and Polarization Anisotropies in the Cosmic Microwave Background, Astrophys. J., 664, 680-686 (2007) · doi:10.1086/519071
[90] Meerburg, P. Daniel; Meyers, Joel; van Engelen, Alexander; Ali-Haïmoud, Yacine, CMB B-mode non-Gaussianity, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.123511
[91] Duivenvoorden, Adriaan J.; Meerburg, P. Daniel; Freese, Katherine, CMB B-mode non-Gaussianity: optimal bispectrum estimator and Fisher forecasts, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.023521
[92] Lazanu, Andrei; Giannantonio, Tommaso; Schmittfull, Marcel; Shellard, E. P. S., Matter bispectrum of large-scale structure: Three-dimensional comparison between theoretical models and numerical simulations, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.083517
[93] Carrasco, John Joseph M.; Foreman, Simon; Green, Daniel; Senatore, Leonardo, The Effective Field Theory of Large Scale Structures at Two Loops, JCAP, 07 (2014) · doi:10.1088/1475-7516/2014/07/057
[94] Baldauf, Tobias; Mercolli, Lorenzo; Zaldarriaga, Matias, Effective field theory of large scale structure at two loops: The apparent scale dependence of the speed of sound, Phys. Rev. D, 92 (2015) · doi:10.1103/PhysRevD.92.123007
[95] Philcox, Oliver H. E.; Ivanov, Mikhail M.; Simonović, Marko; Zaldarriaga, Matias, Combining Full-Shape and BAO Analyses of Galaxy Power Spectra: A 1.6 · doi:10.1088/1475-7516/2020/05/032
[96] Seljak, Uros, Extracting primordial non-gaussianity without cosmic variance, Phys. Rev. Lett., 102 (2009) · doi:10.1103/PhysRevLett.102.021302
[97] Baldauf, Tobias; Mirbabayi, Mehrdad; Simonović, Marko; Zaldarriaga, Matias, LSS constraints with controlled theoretical uncertainties (2016)
[98] Asorey, Jacobo; Crocce, Martin; Gaztanaga, Enrique; Lewis, Antony, Recovering 3D clustering information with angular correlations, Mon. Not. Roy. Astron. Soc., 427, 1891 (2012) · doi:10.1111/j.1365-2966.2012.21972.x
[99] Hahn, ChangHoon; Villaescusa-Navarro, Francisco; Castorina, Emanuele; Scoccimarro, Roman, Constraining M_ν with the bispectrum. Part I. Breaking parameter degeneracies, JCAP, 03 (2020) · doi:10.1088/1475-7516/2020/03/040
[100] Moradinezhad Dizgah, Azadeh; Biagetti, Matteo; Sefusatti, Emiliano; Desjacques, Vincent; Noreña, Jorge, Primordial Non-Gaussianity from Biased Tracers: Likelihood Analysis of Real-Space Power Spectrum and Bispectrum (2020)
[101] Louis, Thibaut, The Atacama Cosmology Telescope: Cross Correlation with Planck maps, JCAP, 07 (2014) · doi:10.1088/1475-7516/2014/07/016
[102] Amendola, Luca, Cosmology and fundamental physics with the Euclid satellite, Living Rev. Rel., 21, 2 (2018) · doi:10.1007/s41114-017-0010-3
[103] Spergel, D., Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report (2015)
[104] Ruggeri, Rossana; Castorina, Emanuele; Carbone, Carmelita; Sefusatti, Emiliano, DEMNUni: Massive neutrinos and the bispectrum of large scale structures, JCAP, 03 (2018) · doi:10.1088/1475-7516/2018/03/003
[105] Senatore, Leonardo; Zaldarriaga, Matias, The IR-resummed Effective Field Theory of Large Scale Structures, JCAP, 02 (2015) · doi:10.1088/1475-7516/2015/02/013
[106] Senatore, Leonardo; Trevisan, Gabriele, On the IR-Resummation in the EFTofLSS, JCAP, 05 (2018) · Zbl 07462699 · doi:10.1088/1475-7516/2018/05/019
[107] Lewandowski, Matthew; Senatore, Leonardo, An analytic implementation of the IR-resummation for the BAO peak, JCAP, 03 (2020) · Zbl 1490.83032 · doi:10.1088/1475-7516/2020/03/018
[108] Takada, Masahiro; Hu, Wayne, Power Spectrum Super-Sample Covariance, Phys. Rev. D, 87 (2013) · doi:10.1103/PhysRevD.87.123504
[109] Lewis, Antony; Challinor, Anthony; Lasenby, Anthony, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J., 538, 473-476 (2000) · doi:10.1086/309179
[110] Lewis, Antony, GetDist: a Python package for analysing Monte Carlo samples (2019)
[111] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XV. Gravitational lensing, Astron. Astrophys., 594, A15 (2016) · doi:10.1051/0004-6361/201525941
[112] Planck Collaboration; Aghanim, N., Planck 2018 results. I. Overview and the cosmological legacy of Planck, Astron. Astrophys., 641, A1 (2020) · doi:10.1051/0004-6361/201833880
[113] Hu, Wayne; Okamoto, Takemi, Mass reconstruction with cmb polarization, Astrophys. J., 574, 566-574 (2002) · doi:10.1086/341110
[114] Okamoto, Takemi; Hu, Wayne, CMB lensing reconstruction on the full sky, Phys. Rev. D, 67 (2003) · doi:10.1103/PhysRevD.67.083002
[115] Hirata, Christopher M.; Seljak, Uros, Reconstruction of lensing from the cosmic microwave background polarization, Phys. Rev. D, 68 (2003) · doi:10.1103/PhysRevD.68.083002
[116] Smith, Kendrick M.; Hanson, Duncan; LoVerde, Marilena; Hirata, Christopher M.; Zahn, Oliver, Delensing CMB Polarization with External Datasets, JCAP, 06 (2012) · doi:10.1088/1475-7516/2012/06/014
[117] Font-Ribera, Andreu; McDonald, Patrick; Mostek, Nick; Reid, Beth A.; Seo, Hee-Jong; Slosar, An, DESI and other dark energy experiments in the era of neutrino mass measurements, JCAP, 05 (2014) · doi:10.1088/1475-7516/2014/05/023
[118] DESI Collaboration; Aghamousa, Amir, The DESI Experiment Part I: Science,Targeting, and Survey Design (2016)
[119] Ma, Zhao-Ming; Hu, Wayne; Huterer, Dragan, Effect of photometric redshift uncertainties on weak lensing tomography, Astrophys. J., 636, 21-29 (2005) · doi:10.1086/497068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.