Abreu, Alex; Nigro, Antonio Chromatic symmetric functions from the modular law. (English) Zbl 07313982 J. Comb. Theory, Ser. A 180, Article ID 105407, 31 p. (2021). MSC: 05E05 05C15 05E10 05A15 05A30 05A17 14M15 16T05 PDF BibTeX XML Cite \textit{A. Abreu} and \textit{A. Nigro}, J. Comb. Theory, Ser. A 180, Article ID 105407, 31 p. (2021; Zbl 07313982) Full Text: DOI
Aistleitner, Christoph; D’Angeli, Daniele; Gutierrez, Abraham; Rodaro, Emanuele; Rosenmann, Amnon Circular automata synchronize with high probability. (English) Zbl 07304662 J. Comb. Theory, Ser. A 178, Article ID 105356, 31 p. (2021). MSC: 68Q 05C PDF BibTeX XML Cite \textit{C. Aistleitner} et al., J. Comb. Theory, Ser. A 178, Article ID 105356, 31 p. (2021; Zbl 07304662) Full Text: DOI
Aliste-Prieto, José; de Mier, Anna; Zamora, José On the smallest trees with the same restricted \(U\)-polynomial and the rooted \(U\)-polynomial. (English) Zbl 07302675 Discrete Math. 344, No. 3, Article ID 112255, 9 p. (2021). MSC: 05C31 05C05 PDF BibTeX XML Cite \textit{J. Aliste-Prieto} et al., Discrete Math. 344, No. 3, Article ID 112255, 9 p. (2021; Zbl 07302675) Full Text: DOI
Bonin, Joseph E.; Chun, Carolyn Decomposable polymatroids and connections with graph coloring. (English) Zbl 1447.05047 Eur. J. Comb. 89, Article ID 103179, 18 p. (2020). MSC: 05B35 52B40 05C15 05C31 PDF BibTeX XML Cite \textit{J. E. Bonin} and \textit{C. Chun}, Eur. J. Comb. 89, Article ID 103179, 18 p. (2020; Zbl 1447.05047) Full Text: DOI
Hwang, Byung-Hak; Jung, Woo-Seok; Lee, Kang-Ju; Oh, Jaeseong; Yu, Sang-Hoon Acyclic orientation polynomials and the sink theorem for chromatic symmetric functions. (English) Zbl 1447.05210 Sémin. Lothar. Comb. 84B, 84B.54, 12 p. (2020). MSC: 05E05 05C31 PDF BibTeX XML Cite \textit{B.-H. Hwang} et al., Sémin. Lothar. Comb. 84B, 84B.54, 12 p. (2020; Zbl 1447.05210) Full Text: Link
Tran, Tan Nhat An equivalent formulation of chromatic quasi-polynomials. (English) Zbl 07233237 Discrete Math. 343, No. 10, Article ID 112012, 8 p. (2020). MSC: 05C31 05C15 PDF BibTeX XML Cite \textit{T. N. Tran}, Discrete Math. 343, No. 10, Article ID 112012, 8 p. (2020; Zbl 07233237) Full Text: DOI
Bernardi, Olivier; Nadeau, Philippe Combinatorial reciprocity for the chromatic polynomial and the chromatic symmetric function. (English) Zbl 1445.05052 Discrete Math. 343, No. 10, Article ID 111989, 12 p. (2020). MSC: 05C31 05C15 05E05 PDF BibTeX XML Cite \textit{O. Bernardi} and \textit{P. Nadeau}, Discrete Math. 343, No. 10, Article ID 111989, 12 p. (2020; Zbl 1445.05052) Full Text: DOI
Knox, Fiachra; Mohar, Bojan Maximum number of colourings: 4-chromatic graphs. (English) Zbl 1443.05070 J. Comb. Theory, Ser. B 144, 95-118 (2020). MSC: 05C15 05C31 PDF BibTeX XML Cite \textit{F. Knox} and \textit{B. Mohar}, J. Comb. Theory, Ser. B 144, 95--118 (2020; Zbl 1443.05070) Full Text: DOI
Buckingham, Paul \(p\)-adic roots of chromatic polynomials. (English) Zbl 1442.05100 Graphs Comb. 36, No. 4, 1111-1130 (2020). MSC: 05C31 05C15 11R32 PDF BibTeX XML Cite \textit{P. Buckingham}, Graphs Comb. 36, No. 4, 1111--1130 (2020; Zbl 1442.05100) Full Text: DOI
Chmutov, Sergei; Kazarian, Maxim; Lando, Sergei Polynomial graph invariants and the KP hierarchy. (English) Zbl 1442.05101 Sel. Math., New Ser. 26, No. 3, Paper No. 34, 22 p. (2020). MSC: 05C31 05C25 34K10 05A15 16T05 PDF BibTeX XML Cite \textit{S. Chmutov} et al., Sel. Math., New Ser. 26, No. 3, Paper No. 34, 22 p. (2020; Zbl 1442.05101) Full Text: DOI
White, Jacob A. Quasisymmetric functions from combinatorial Hopf monoids and Ehrhart theory. (English. French summary) Zbl 1440.05248 Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4–8, 2016. Nancy: The Association. Discrete Mathematics & Theoretical Computer Science (DMTCS). Discrete Math. Theor. Comput. Sci., Proc., 1215-1226 (2020). MSC: 05E16 05E05 16T05 05C31 PDF BibTeX XML Cite \textit{J. A. White}, in: Proceedings of the 28th international conference on formal power series and algebraic combinatorics, FPSAC 2016, Vancouver, Canada, July 4--8, 2016. Nancy: The Association. Discrete Mathematics \& Theoretical Computer Science (DMTCS). 1215--1226 (2020; Zbl 1440.05248) Full Text: Link
Huryn, Jake; Chmutov, Sergei A few more trees the chromatic symmetric function can distinguish. (English) Zbl 1431.05041 Involve 13, No. 1, 109-116 (2020). MSC: 05C05 05C31 05E05 PDF BibTeX XML Cite \textit{J. Huryn} and \textit{S. Chmutov}, Involve 13, No. 1, 109--116 (2020; Zbl 1431.05041) Full Text: DOI
Huh, JiSun; Nam, Sun-Young; Yoo, Meesue Melting lollipop chromatic quasisymmetric functions and Schur expansion of unicellular LLT polynomials. (English) Zbl 1431.05148 Discrete Math. 343, No. 3, Article ID 111728, 21 p. (2020). MSC: 05E05 05E10 PDF BibTeX XML Cite \textit{J. Huh} et al., Discrete Math. 343, No. 3, Article ID 111728, 21 p. (2020; Zbl 1431.05148) Full Text: DOI arXiv
Kim, Ringi; Kwon, O-joung; Oum, Sang-il; Sivaraman, Vaidy Classes of graphs with no long cycle as a vertex-minor are polynomially \(\chi\)-bounded. (English) Zbl 1430.05058 J. Comb. Theory, Ser. B 140, 372-386 (2020). MSC: 05C31 05C76 PDF BibTeX XML Cite \textit{R. Kim} et al., J. Comb. Theory, Ser. B 140, 372--386 (2020; Zbl 1430.05058) Full Text: DOI
Awan, Jordan; Bernardi, Olivier Tutte polynomials for directed graphs. (English) Zbl 1430.05057 J. Comb. Theory, Ser. B 140, 192-247 (2020). MSC: 05C31 05C20 05E05 05A15 PDF BibTeX XML Cite \textit{J. Awan} and \textit{O. Bernardi}, J. Comb. Theory, Ser. B 140, 192--247 (2020; Zbl 1430.05057) Full Text: DOI arXiv
Kenyon, Richard; Lam, Wai Yeung Holomorphic quadratic differentials on graphs and the chromatic polynomial. (English) Zbl 1428.05143 J. Comb. Theory, Ser. A 170, Article ID 105140, 14 p. (2020). MSC: 05C31 05C15 53A10 PDF BibTeX XML Cite \textit{R. Kenyon} and \textit{W. Y. Lam}, J. Comb. Theory, Ser. A 170, Article ID 105140, 14 p. (2020; Zbl 1428.05143) Full Text: DOI arXiv
Kok, Johan; Germina, K. A. Chromatic harmonic indices and chromatic harmonic polynomials of certain graphs. (English) Zbl 1455.05031 Iran. J. Math. Sci. Inform. 14, No. 2, 173-184 (2019). MSC: 05C31 05C15 05C38 05C75 05C85 PDF BibTeX XML Cite \textit{J. Kok} and \textit{K. A. Germina}, Iran. J. Math. Sci. Inform. 14, No. 2, 173--184 (2019; Zbl 1455.05031) Full Text: Link
Agol, Ian; Krushkal, Vyacheslav Structure of the flow and Yamada polynomials of cubic graphs. (English) Zbl 1453.05051 Gay, David T. (ed.) et al., Breadth in contemporary topology. 2017 Georgia international topology conference, University of Georgia, Athens, Georgia, USA, May 22 – June 2, 2017. Providence, RI: American Mathematical Society (AMS). Proc. Symp. Pure Math. 102, 1-20 (2019). MSC: 05C31 05C10 05C75 05C22 57M15 57R56 PDF BibTeX XML Cite \textit{I. Agol} and \textit{V. Krushkal}, Proc. Symp. Pure Math. 102, 1--20 (2019; Zbl 1453.05051) Full Text: DOI
Rohith Raja, M.; Naduvath, Sudev; Dominic, Charles Modified chromatic Schultz polynomial of some cycle related graphs. (English) Zbl 1444.05070 Acta Univ. M. Belii, Ser. Math. 27, 63-82 (2019). MSC: 05C31 05C15 05C12 PDF BibTeX XML Cite \textit{M. Rohith Raja} et al., Acta Univ. M. Belii, Ser. Math. 27, 63--82 (2019; Zbl 1444.05070) Full Text: Link
Kok, Johan Heuristic method to determine lucky \(k\)-polynomials for \(k\)-colorable graphs. (English) Zbl 1439.05112 Acta Univ. Sapientiae, Inform. 11, No. 2, 206-214 (2019). MSC: 05C31 05C15 05C38 05C75 05C85 PDF BibTeX XML Cite \textit{J. Kok}, Acta Univ. Sapientiae, Inform. 11, No. 2, 206--214 (2019; Zbl 1439.05112) Full Text: DOI
Luna-Olivera, Beatriz Carely; Merino, Criel; Ramírez-Ibáñez, Marcelino More connections between the matching polynomial and the chromatic polynomial. (English) Zbl 1439.05113 AKCE Int. J. Graphs Comb. 16, No. 3, 319-323 (2019). MSC: 05C31 05C15 PDF BibTeX XML Cite \textit{B. C. Luna-Olivera} et al., AKCE Int. J. Graphs Comb. 16, No. 3, 319--323 (2019; Zbl 1439.05113) Full Text: DOI
Javed, Sana; Ahmad, Mariya; Riasat, Ayesha Chromaticity of \(K_4\)-homeomorph graphs. (English) Zbl 1427.05111 Util. Math. 111, 235-259 (2019). MSC: 05C31 05C15 PDF BibTeX XML Cite \textit{S. Javed} et al., Util. Math. 111, 235--259 (2019; Zbl 1427.05111)
Lee, Jonghyeon; Shin, Heesung The chromatic polynomial for cycle graphs. (English) Zbl 1428.05144 Korean J. Math. 27, No. 2, 525-534 (2019). MSC: 05C31 05C15 05C30 PDF BibTeX XML Cite \textit{J. Lee} and \textit{H. Shin}, Korean J. Math. 27, No. 2, 525--534 (2019; Zbl 1428.05144) Full Text: DOI
Aiello, Valeriano; Conti, Roberto The Jones polynomial and functions of positive type on the oriented Jones-Thompson groups \(\vec{F}\) and \(\vec{T} \). (English) Zbl 1428.43005 Complex Anal. Oper. Theory 13, No. 7, 3127-3149 (2019). Reviewer: Bruno Zimmermann (Trieste) MSC: 43A35 57K14 05C31 PDF BibTeX XML Cite \textit{V. Aiello} and \textit{R. Conti}, Complex Anal. Oper. Theory 13, No. 7, 3127--3149 (2019; Zbl 1428.43005) Full Text: DOI
Cooper, Andrew A.; de Silva, Vin; Sazdanovic, Radmila On configuration spaces and simplicial complexes. (English) Zbl 1431.55018 New York J. Math. 25, 723-744 (2019). Reviewer: Biplab Basak (New Delhi) MSC: 55U10 05C15 05C31 55R80 57Q15 PDF BibTeX XML Cite \textit{A. A. Cooper} et al., New York J. Math. 25, 723--744 (2019; Zbl 1431.55018) Full Text: Link
Cox, Danielle; Duffy, Christopher Chromatic polynomials of oriented graphs. (English) Zbl 1420.05082 Electron. J. Comb. 26, No. 3, Research Paper P3.55, 15 p. (2019). MSC: 05C31 05C15 05C20 PDF BibTeX XML Cite \textit{D. Cox} and \textit{C. Duffy}, Electron. J. Comb. 26, No. 3, Research Paper P3.55, 15 p. (2019; Zbl 1420.05082) Full Text: Link arXiv
Makowsky, J. A.; Ravve, E. V.; Kotek, T. A logician’s view of graph polynomials. (English) Zbl 07106327 Ann. Pure Appl. Logic 170, No. 9, 1030-1069 (2019). MSC: 03 03C13 05 05C31 PDF BibTeX XML Cite \textit{J. A. Makowsky} et al., Ann. Pure Appl. Logic 170, No. 9, 1030--1069 (2019; Zbl 07106327) Full Text: DOI arXiv
Davis, Brian Unlabeled signed graph coloring. (English) Zbl 1419.05097 Rocky Mt. J. Math. 49, No. 4, 1111-1122 (2019). MSC: 05C22 05C15 05C31 PDF BibTeX XML Cite \textit{B. Davis}, Rocky Mt. J. Math. 49, No. 4, 1111--1122 (2019; Zbl 1419.05097) Full Text: DOI Euclid arXiv
Lazebnik, Felix The maximum number of colorings of graphs of given order and size: a survey. (English) Zbl 1417.05073 Discrete Math. 342, No. 10, 2783-2791 (2019). MSC: 05C15 05C31 05C35 05C30 PDF BibTeX XML Cite \textit{F. Lazebnik}, Discrete Math. 342, No. 10, 2783--2791 (2019; Zbl 1417.05073) Full Text: DOI
Qi, Hao; Wong, Tsai-Lien; Zhu, Xuding Chromatic number and orientations of graphs and signed graphs. (English) Zbl 1417.05078 Taiwanese J. Math. 23, No. 4, 767-776 (2019). MSC: 05C15 05C22 05C31 PDF BibTeX XML Cite \textit{H. Qi} et al., Taiwanese J. Math. 23, No. 4, 767--776 (2019; Zbl 1417.05078) Full Text: DOI Euclid
Tran, Tan Nhat; Yoshinaga, Masahiko Combinatorics of certain abelian Lie group arrangements and chromatic quasi-polynomials. (English) Zbl 1414.05153 J. Comb. Theory, Ser. A 165, 258-272 (2019). MSC: 05C31 52C35 PDF BibTeX XML Cite \textit{T. N. Tran} and \textit{M. Yoshinaga}, J. Comb. Theory, Ser. A 165, 258--272 (2019; Zbl 1414.05153) Full Text: DOI
Bukovac, Zoe; Farr, Graham; Morgan, Kerri Short certificates for chromatic equivalence. (English) Zbl 1411.05082 J. Graph Algorithms Appl. 23, No. 2, 227-269 (2019). MSC: 05C15 05C85 05C31 PDF BibTeX XML Cite \textit{Z. Bukovac} et al., J. Graph Algorithms Appl. 23, No. 2, 227--269 (2019; Zbl 1411.05082) Full Text: DOI
Erey, Aysel A broken cycle theorem for the restrained chromatic function. (English) Zbl 1410.05066 Turk. J. Math. 43, No. 1, 355-360 (2019). MSC: 05C15 05C30 05C31 05C85 PDF BibTeX XML Cite \textit{A. Erey}, Turk. J. Math. 43, No. 1, 355--360 (2019; Zbl 1410.05066) Full Text: DOI
Mphako-Banda, Eunice An introduction to the \(k\)-defect polynomials. (English) Zbl 1411.05132 Quaest. Math. 42, No. 2, 207-216 (2019). MSC: 05C31 05C15 PDF BibTeX XML Cite \textit{E. Mphako-Banda}, Quaest. Math. 42, No. 2, 207--216 (2019; Zbl 1411.05132) Full Text: DOI
Aiello, Valeriano; Conti, Roberto Graph polynomials and link invariants as positive type functions on Thompson’s group \(F\). (English) Zbl 1412.43007 J. Knot Theory Ramifications 28, No. 2, Article ID 1950006, 17 p. (2019). Reviewer: Ioan Pop (Iaşi) MSC: 43A35 57M27 05C31 PDF BibTeX XML Cite \textit{V. Aiello} and \textit{R. Conti}, J. Knot Theory Ramifications 28, No. 2, Article ID 1950006, 17 p. (2019; Zbl 1412.43007) Full Text: DOI arXiv
Delbourgo, Daniel; Morgan, Kerri An algorithm which outputs a graph with a specified chromatic factor. (English) Zbl 1406.05046 Discrete Appl. Math. 257, 128-150 (2019). MSC: 05C31 05C15 PDF BibTeX XML Cite \textit{D. Delbourgo} and \textit{K. Morgan}, Discrete Appl. Math. 257, 128--150 (2019; Zbl 1406.05046) Full Text: DOI
Hallam, Joshua; Martin, Jeremy L.; Sagan, Bruce E. Increasing spanning forests in graphs and simplicial complexes. (English) Zbl 1402.05183 Eur. J. Comb. 76, 178-198 (2019). MSC: 05C78 05C31 05E45 PDF BibTeX XML Cite \textit{J. Hallam} et al., Eur. J. Comb. 76, 178--198 (2019; Zbl 1402.05183) Full Text: DOI
Karim, N. S. A.; Hasni, R. A new family of chromatically unique 6-bridge graph. (English) Zbl 1443.05069 Proyecciones 37, No. 2, 239-263 (2018). MSC: 05C15 05C31 PDF BibTeX XML Cite \textit{N. S. A. Karim} and \textit{R. Hasni}, Proyecciones 37, No. 2, 239--263 (2018; Zbl 1443.05069) Full Text: DOI
Tuza, Zsolt Mixed hypergraphs and beyond. (English) Zbl 1421.05068 Art Discrete Appl. Math. 1, No. 2, Paper No. P2.05, 11 p. (2018). MSC: 05C65 05C15 05C31 05B05 PDF BibTeX XML Cite \textit{Z. Tuza}, Art Discrete Appl. Math. 1, No. 2, Paper No. P2.05, 11 p. (2018; Zbl 1421.05068) Full Text: DOI
Peng, Yanling The chromaticity of a family of nonplanar graphs. (English) Zbl 1424.05101 J. Math., Wuhan Univ. 38, No. 5, 835-842 (2018). MSC: 05C15 05C31 PDF BibTeX XML Cite \textit{Y. Peng}, J. Math., Wuhan Univ. 38, No. 5, 835--842 (2018; Zbl 1424.05101) Full Text: DOI
Tsujie, Shuhei The chromatic symmetric functions of trivially perfect graphs and cographs. (English) Zbl 1402.05081 Graphs Comb. 34, No. 5, 1037-1048 (2018). MSC: 05C15 05C17 05C25 05C31 05C60 05E05 PDF BibTeX XML Cite \textit{S. Tsujie}, Graphs Comb. 34, No. 5, 1037--1048 (2018; Zbl 1402.05081) Full Text: DOI
Alexandersson, Per; Panova, Greta LLT polynomials, chromatic quasisymmetric functions and graphs with cycles. (English) Zbl 1397.05197 Discrete Math. 341, No. 12, 3453-3482 (2018). MSC: 05E05 PDF BibTeX XML Cite \textit{P. Alexandersson} and \textit{G. Panova}, Discrete Math. 341, No. 12, 3453--3482 (2018; Zbl 1397.05197) Full Text: DOI
Peng, Yanling The graph polynomials and their equivalence. (English) Zbl 1413.05174 J. Suzhou Univ. Sci. Technol., Nat. Sci. 35, No. 1, 12-15 (2018). MSC: 05C31 05C15 PDF BibTeX XML Cite \textit{Y. Peng}, J. Suzhou Univ. Sci. Technol., Nat. Sci. 35, No. 1, 12--15 (2018; Zbl 1413.05174) Full Text: DOI
Aliste-Prieto, José; Zamora, José; de Mier, Anna On graphs with the same restricted \(U\)-polynomial and the \(U\)-polynomial for rooted graphs. (English) Zbl 1397.05081 Garijo, Delia (ed.) et al., Discrete mathematics days 2018. Extended abstracts of the 11th “Jornadas de matemática discreta y algorítmica” (JMDA), Sevilla, Spain, June 27–29, 2018. Amsterdam: Elsevier. Electronic Notes in Discrete Mathematics 68, 185-190 (2018). MSC: 05C31 05C05 PDF BibTeX XML Cite \textit{J. Aliste-Prieto} et al., Electron. Notes Discrete Math. 68, 185--190 (2018; Zbl 1397.05081) Full Text: DOI
Casals, Roger; Murphy, Emmy Differential algebra of cubic planar graphs. (English) Zbl 1397.05042 Adv. Math. 338, 401-446 (2018). MSC: 05C10 05C15 05C31 53D10 53D15 57R17 12H05 PDF BibTeX XML Cite \textit{R. Casals} and \textit{E. Murphy}, Adv. Math. 338, 401--446 (2018; Zbl 1397.05042) Full Text: DOI arXiv
Dong, Fengming On graphs whose flow polynomials have real roots only. (English) Zbl 1393.05114 Electron. J. Comb. 25, No. 3, Research Paper P3.26, 14 p. (2018). MSC: 05C15 05C21 05C31 PDF BibTeX XML Cite \textit{F. Dong}, Electron. J. Comb. 25, No. 3, Research Paper P3.26, 14 p. (2018; Zbl 1393.05114) Full Text: Link arXiv
Belbachir, H.; Boutiche, M. A.; Medjerredine, A. Enumerating some stable partitions involving Stirling and \(r\)-Stirling numbers of the second kind. (English) Zbl 1439.11071 Mediterr. J. Math. 15, No. 3, Paper No. 87, 12 p. (2018). MSC: 11B73 05C15 05A19 11B83 11B39 PDF BibTeX XML Cite \textit{H. Belbachir} et al., Mediterr. J. Math. 15, No. 3, Paper No. 87, 12 p. (2018; Zbl 1439.11071) Full Text: DOI
Erey, Aysel On the maximum number of colorings of a graph. (English) Zbl 1387.05087 J. Comb. 9, No. 3, 489-497 (2018). MSC: 05C15 05C30 05C31 05C35 05C69 PDF BibTeX XML Cite \textit{A. Erey}, J. Comb. 9, No. 3, 489--497 (2018; Zbl 1387.05087) Full Text: DOI arXiv
Delucchi, Emanuele; Moci, Luca Products of arithmetic matroids and quasipolynomial invariants of CW-complexes. (English) Zbl 1385.05029 J. Comb. Theory, Ser. A 157, 28-40 (2018). MSC: 05B35 05C31 52B40 PDF BibTeX XML Cite \textit{E. Delucchi} and \textit{L. Moci}, J. Comb. Theory, Ser. A 157, 28--40 (2018; Zbl 1385.05029) Full Text: DOI
Arunkumar, G.; Kus, Deniz; Venkatesh, R. Root multiplicities for Borcherds algebras and graph coloring. (English) Zbl 1400.05274 J. Algebra 499, 538-569 (2018). MSC: 05E15 05C15 05C31 17B67 PDF BibTeX XML Cite \textit{G. Arunkumar} et al., J. Algebra 499, 538--569 (2018; Zbl 1400.05274) Full Text: DOI arXiv
Cameron, Peter J.; Semeraro, Jason The cycle polynomial of a permutation group. (English) Zbl 06841858 Electron. J. Comb. 25, No. 1, Research Paper P1.14, 13 p. (2018). MSC: 20B05 05C31 PDF BibTeX XML Cite \textit{P. J. Cameron} and \textit{J. Semeraro}, Electron. J. Comb. 25, No. 1, Research Paper P1.14, 13 p. (2018; Zbl 06841858) Full Text: Link arXiv
Goodall, A.; Hermann, M.; Kotek, T.; Makowsky, J. A.; Noble, S. D. On the complexity of generalized chromatic polynomials. (English) Zbl 1378.05059 Adv. Appl. Math. 94, 71-102 (2018). MSC: 05C15 05C31 05C85 68Q17 68W05 PDF BibTeX XML Cite \textit{A. Goodall} et al., Adv. Appl. Math. 94, 71--102 (2018; Zbl 1378.05059) Full Text: DOI arXiv
Sazdanovic, Radmila; Yip, Martha A categorification of the chromatic symmetric function. (English) Zbl 1373.05204 J. Comb. Theory, Ser. A 154, 218-246 (2018). MSC: 05E05 05C31 05C15 05C62 PDF BibTeX XML Cite \textit{R. Sazdanovic} and \textit{M. Yip}, J. Comb. Theory, Ser. A 154, 218--246 (2018; Zbl 1373.05204) Full Text: DOI arXiv
Geĭn, Pavel Aleksandrovich About chromatic uniqueness of some complete tripartite graphs. (Russian. English summary) Zbl 1430.05036 Sib. Èlektron. Mat. Izv. 14, 1492-1504 (2017). MSC: 05C15 05C31 PDF BibTeX XML Cite \textit{P. A. Geĭn}, Sib. Èlektron. Mat. Izv. 14, 1492--1504 (2017; Zbl 1430.05036) Full Text: DOI
Borowiecki, M.; Patil, H. P. Colourings of \((k-r,k)\)-trees. (English) Zbl 1400.05078 Opusc. Math. 37, No. 4, 491-500 (2017). Reviewer: Yansheng Wu (Nanjing) MSC: 05C15 05C05 05C31 PDF BibTeX XML Cite \textit{M. Borowiecki} and \textit{H. P. Patil}, Opusc. Math. 37, No. 4, 491--500 (2017; Zbl 1400.05078) Full Text: DOI
Brown, Jason; Erey, Aysel Restraints permitting the largest number of colourings. (English) Zbl 1396.05038 Discrete Appl. Math. 222, 76-88 (2017). MSC: 05C15 05C31 PDF BibTeX XML Cite \textit{J. Brown} and \textit{A. Erey}, Discrete Appl. Math. 222, 76--88 (2017; Zbl 1396.05038) Full Text: DOI arXiv
Han, Youfa; Kang, Yunfeng; Dong, Ting Polynomial of coloring the graph. (Chinese. English summary) Zbl 1399.05045 J. Liaoning Norm. Univ., Nat. Sci. 40, No. 3, 289-292 (2017). MSC: 05C10 05C15 05C31 PDF BibTeX XML Cite \textit{Y. Han} et al., J. Liaoning Norm. Univ., Nat. Sci. 40, No. 3, 289--292 (2017; Zbl 1399.05045) Full Text: DOI
León, Emerson Stapledon decompositions and inequalities for coefficients of chromatic polynomials. (English) Zbl 1384.05100 Sémin. Lothar. Comb. 78B, 78B.24, 12 p. (2017). MSC: 05C31 05C15 52B20 11H06 PDF BibTeX XML Cite \textit{E. León}, Sémin. Lothar. Comb. 78B, 78B.24, 12 p. (2017; Zbl 1384.05100) Full Text: Link
Slutzky, David Recursive formulae for the chromatic polynomials of complete \(r\)-uniform mixed interval hypergraphs. (English) Zbl 06837026 Ars Comb. 134, 303-324 (2017). MSC: 05C15 05C31 05C65 PDF BibTeX XML Cite \textit{D. Slutzky}, Ars Comb. 134, 303--324 (2017; Zbl 06837026)
Mao, Yaping; Ye, Chengfu; Li, Hengzhe; Zhang, Shumin The chromatic equivalence class of graph \(\psi_n^3(n-3,1)\). (English) Zbl 06837003 Ars Comb. 135, 399-421 (2017). MSC: 05C15 05C31 05C60 PDF BibTeX XML Cite \textit{Y. Mao} et al., Ars Comb. 135, 399--421 (2017; Zbl 06837003)
Burgdorf, Sabine; Laurent, Monique; Piovesan, Teresa On the closure of the completely positive semidefinite cone and linear approximations to quantum colorings. (English) Zbl 1375.15049 Electron. J. Linear Algebra 32, 15-40 (2017). MSC: 15B48 81P40 90C22 90C27 PDF BibTeX XML Cite \textit{S. Burgdorf} et al., Electron. J. Linear Algebra 32, 15--40 (2017; Zbl 1375.15049) Full Text: DOI arXiv
Baranovsky, Vladimir; Zubkov, Maksym Chromatic graph homology for brace algebras. (English) Zbl 1379.57005 New York J. Math. 23, 1307-1319 (2017). Reviewer: Gabriel C. Drummond-Cole (Gyeongbuk) MSC: 57M15 57M27 05C10 05C31 18D50 55R80 PDF BibTeX XML Cite \textit{V. Baranovsky} and \textit{M. Zubkov}, New York J. Math. 23, 1307--1319 (2017; Zbl 1379.57005) Full Text: EMIS
Aliste-Prieto, José; de Mier, Anna; Zamora, José On trees with the same restricted \(U\)-polynomial and the Prouhet-Tarry-Escott problem. (English) Zbl 1369.05031 Discrete Math. 340, No. 6, 1435-1441 (2017). MSC: 05C05 05E05 05C31 05C15 PDF BibTeX XML Cite \textit{J. Aliste-Prieto} et al., Discrete Math. 340, No. 6, 1435--1441 (2017; Zbl 1369.05031) Full Text: DOI
Sanli, Utkum; Cangul, Ismail Naci A new method for calculating the chromatic polynomial. (English) Zbl 1368.05055 Appl. Sci. 19, 110-121 (2017). MSC: 05C15 05C31 05C10 05C30 PDF BibTeX XML Cite \textit{U. Sanli} and \textit{I. N. Cangul}, Appl. Sci. 19, 110--121 (2017; Zbl 1368.05055) Full Text: Link
Li, Shuchao; Liu, Lin; Wu, Yueyu On the coefficients of the independence polynomial of graphs. (English) Zbl 1369.05163 J. Comb. Optim. 33, No. 4, 1324-1342 (2017). MSC: 05C69 05C31 05C35 05C15 05C40 PDF BibTeX XML Cite \textit{S. Li} et al., J. Comb. Optim. 33, No. 4, 1324--1342 (2017; Zbl 1369.05163) Full Text: DOI
Brimkov, Boris; Hicks, Illya V. Memory efficient algorithms for cactus graphs and block graphs. (English) Zbl 1361.05126 Discrete Appl. Math. 216, Part 2, 393-407 (2017). MSC: 05C85 05C38 05C12 05C31 05C15 05C90 PDF BibTeX XML Cite \textit{B. Brimkov} and \textit{I. V. Hicks}, Discrete Appl. Math. 216, Part 2, 393--407 (2017; Zbl 1361.05126) Full Text: DOI
Cilleruelo, J. Visible lattice points and the chromatic zeta function of a graph. (English) Zbl 1399.05115 Acta Math. Hung. 151, No. 1, 1-7 (2017). MSC: 05C31 11M41 PDF BibTeX XML Cite \textit{J. Cilleruelo}, Acta Math. Hung. 151, No. 1, 1--7 (2017; Zbl 1399.05115) Full Text: DOI
Csikvári, Péter; E. Frenkel, Péter; Hladký, Jan; Hubai, Tamás Chromatic roots and limits of dense graphs. (English) Zbl 1357.05039 Discrete Math. 340, No. 5, 1129-1135 (2017). MSC: 05C15 05C42 05C31 PDF BibTeX XML Cite \textit{P. Csikvári} et al., Discrete Math. 340, No. 5, 1129--1135 (2017; Zbl 1357.05039) Full Text: DOI
Cameron, Peter J.; Morgan, Kerri Algebraic properties of chromatic roots. (English) Zbl 1355.05134 Electron. J. Comb. 24, No. 1, Research Paper P1.21, 14 p. (2017). MSC: 05C31 05C15 PDF BibTeX XML Cite \textit{P. J. Cameron} and \textit{K. Morgan}, Electron. J. Comb. 24, No. 1, Research Paper P1.21, 14 p. (2017; Zbl 1355.05134) Full Text: Link arXiv
Morgan, Kerri; Chen, Rui An infinite family of 2-connected graphs that have reliability factorisations. (English) Zbl 1352.05100 Discrete Appl. Math. 218, 123-127 (2017). MSC: 05C40 05C31 90B25 PDF BibTeX XML Cite \textit{K. Morgan} and \textit{R. Chen}, Discrete Appl. Math. 218, 123--127 (2017; Zbl 1352.05100) Full Text: DOI
Thomassen, Carsten The number of colorings of planar graphs with no separating triangles. (English) Zbl 1350.05043 J. Comb. Theory, Ser. B 122, 615-633 (2017). MSC: 05C15 05C31 PDF BibTeX XML Cite \textit{C. Thomassen}, J. Comb. Theory, Ser. B 122, 615--633 (2017; Zbl 1350.05043) Full Text: DOI
Wang, Wei; Qian, Jianguo; Yan, Zhidan When does the list-coloring function of a graph equal its chromatic polynomial. (English) Zbl 1350.05044 J. Comb. Theory, Ser. B 122, 543-549 (2017). MSC: 05C15 05C31 PDF BibTeX XML Cite \textit{W. Wang} et al., J. Comb. Theory, Ser. B 122, 543--549 (2017; Zbl 1350.05044) Full Text: DOI
Shi, Yongtang; Dehmer, Matthias; Li, Xueliang; Gutman, Ivan Graph polynomials. (English) Zbl 1362.05003 Discrete Mathematics and Its Applications. Boca Raton, FL: CRC Press (ISBN 978-1-4987-5590-0/hbk; 978-1-4987-5591-7/ebook). xii, 249 p. (2017). Reviewer: Matthias Beck (San Francisco) MSC: 05-02 05-06 05C31 05C90 00B15 PDF BibTeX XML Cite \textit{Y. Shi} et al., Graph polynomials. Boca Raton, FL: CRC Press (2017; Zbl 1362.05003) Full Text: DOI
Maamra, Mohammed Said; Mihoubi, Miloud Note on some restricted Stirling numbers of the second kind. (Note sur des restrictions des nombres de Stirling de deuxième espèce.) (English. French summary) Zbl 1387.05120 C. R., Math., Acad. Sci. Paris 354, No. 3, 231-234 (2016). MSC: 05C31 11B73 PDF BibTeX XML Cite \textit{M. S. Maamra} and \textit{M. Mihoubi}, C. R., Math., Acad. Sci. Paris 354, No. 3, 231--234 (2016; Zbl 1387.05120) Full Text: DOI
Agol, Ian; Krushkal, Vyacheslav Tutte relations, TQFT, and planarity of cubic graphs. (English) Zbl 1365.05137 Ill. J. Math. 60, No. 1, 273-288 (2016). MSC: 05C31 05C10 57R56 57M15 PDF BibTeX XML Cite \textit{I. Agol} and \textit{V. Krushkal}, Ill. J. Math. 60, No. 1, 273--288 (2016; Zbl 1365.05137) Full Text: Euclid arXiv
Brause, Christoph; Doan, Trung Duy; Schiermeyer, Ingo On the chromatic number of \((P_{5},K_{2,t})\)-free graphs. (English) Zbl 1356.05046 Ceselli, Alberto (ed.) et al., Extended abstracts of the 14th Cologne-Twente workshop on graphs and combinatorial optimization (CTW’16), Gargnano, Italy, June 6–8, 2016. Amsterdam: Elsevier. Electronic Notes in Discrete Mathematics 55, 127-130 (2016). MSC: 05C15 05C31 PDF BibTeX XML Cite \textit{C. Brause} et al., Electron. Notes Discrete Math. 55, 127--130 (2016; Zbl 1356.05046) Full Text: DOI
Abd Karim, Nor Suriya; Hasni, Roslan; Lau, Gee Choon Complete solution to chromatic uniqueness of \(K_4\)-homeomorphs with girth 9. (English) Zbl 1355.05101 Appl. Math. E-Notes 16, 144-153 (2016). MSC: 05C15 05C31 PDF BibTeX XML Cite \textit{N. S. Abd Karim} et al., Appl. Math. E-Notes 16, 144--153 (2016; Zbl 1355.05101) Full Text: EMIS
Bocci, Cristiano; Cooper, Susan; Guardo, Elena; Harbourne, Brian; Janssen, Mike; Nagel, Uwe; Seceleanu, Alexandra; Van Tuyl, Adam; Vu, Thanh The Waldschmidt constant for squarefree monomial ideals. (English) Zbl 1352.13012 J. Algebr. Comb. 44, No. 4, 875-904 (2016). Reviewer: Piotr Pokora (Hannover) MSC: 13F20 13A02 14N05 PDF BibTeX XML Cite \textit{C. Bocci} et al., J. Algebr. Comb. 44, No. 4, 875--904 (2016; Zbl 1352.13012) Full Text: DOI arXiv
Mao, Yaping; Ye, Chengfu The fifth coefficient of adjoint polynomial and a new invariant. (English) Zbl 1413.05173 Ars Comb. 128, 83-102 (2016). MSC: 05C31 05C15 05C60 PDF BibTeX XML Cite \textit{Y. Mao} and \textit{C. Ye}, Ars Comb. 128, 83--102 (2016; Zbl 1413.05173)
Perrett, Thomas Chromatic roots and minor-closed families of graphs. (English) Zbl 1346.05126 SIAM J. Discrete Math. 30, No. 3, 1883-1897 (2016). MSC: 05C31 05C15 05C83 PDF BibTeX XML Cite \textit{T. Perrett}, SIAM J. Discrete Math. 30, No. 3, 1883--1897 (2016; Zbl 1346.05126) Full Text: DOI arXiv
Gein, Pavel A. About chromatic uniqueness of complete tripartite graph \(K(s, s - 1, s - k)\), where \(k\geq1\) and \(s - k\geq 2\). (Russian. English summary) Zbl 1341.05129 Sib. Èlektron. Mat. Izv. 13, 331-337 (2016). MSC: 05C31 PDF BibTeX XML Cite \textit{P. A. Gein}, Sib. Èlektron. Mat. Izv. 13, 331--337 (2016; Zbl 1341.05129) Full Text: DOI
Perrett, Thomas A zero-free interval for chromatic polynomials of graphs with 3-leaf spanning trees. (English) Zbl 1339.05145 Discrete Math. 339, No. 11, 2706-2714 (2016). MSC: 05C15 05C05 05C31 PDF BibTeX XML Cite \textit{T. Perrett}, Discrete Math. 339, No. 11, 2706--2714 (2016; Zbl 1339.05145) Full Text: DOI arXiv
Møller, Jesper M.; Nord, Gesche Chromatic polynomials of simplicial complexes. (English) Zbl 1338.05091 Graphs Comb. 32, No. 2, 745-772 (2016). MSC: 05C15 05C31 PDF BibTeX XML Cite \textit{J. M. Møller} and \textit{G. Nord}, Graphs Comb. 32, No. 2, 745--772 (2016; Zbl 1338.05091) Full Text: DOI arXiv
Brown, Jason; Erey, Aysel On the roots of \(\sigma\)-polynomials. (English) Zbl 1339.05113 J. Graph Theory 82, No. 1, 90-102 (2016). MSC: 05C15 05C31 PDF BibTeX XML Cite \textit{J. Brown} and \textit{A. Erey}, J. Graph Theory 82, No. 1, 90--102 (2016; Zbl 1339.05113) Full Text: DOI
Brimkov, Boris; Hicks, Illya V. Chromatic and flow polynomials of generalized vertex join graphs and outerplanar graphs. (English) Zbl 1333.05102 Discrete Appl. Math. 204, 13-21 (2016). MSC: 05C15 05C31 05C10 05C05 05C69 PDF BibTeX XML Cite \textit{B. Brimkov} and \textit{I. V. Hicks}, Discrete Appl. Math. 204, 13--21 (2016; Zbl 1333.05102) Full Text: DOI arXiv
Guo, Jin; Wu, Tongsuo Graph properties and stratified presentations of partially ordered sets. (English) Zbl 1332.05118 Algebra Colloq. 23, No. 1, 51-63 (2016). MSC: 05C75 05C69 05C85 06A07 13A15 13E15 13F20 PDF BibTeX XML Cite \textit{J. Guo} and \textit{T. Wu}, Algebra Colloq. 23, No. 1, 51--63 (2016; Zbl 1332.05118) Full Text: DOI
Hertz, Alain; Mélot, Hadrien Counting the number of non-equivalent vertex colorings of a graph. (English) Zbl 1332.05055 Discrete Appl. Math. 203, 62-71 (2016). MSC: 05C15 05C31 05C35 11B73 PDF BibTeX XML Cite \textit{A. Hertz} and \textit{H. Mélot}, Discrete Appl. Math. 203, 62--71 (2016; Zbl 1332.05055) Full Text: DOI
Kirillov, Anatol N. On some quadratic algebras. I \(\frac{1}{2}\): Combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials. (English) Zbl 1348.05213 SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 002, 172 p. (2016). MSC: 05E15 14N15 16T25 53D45 PDF BibTeX XML Cite \textit{A. N. Kirillov}, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 002, 172 p. (2016; Zbl 1348.05213) Full Text: DOI EMIS arXiv
Csikvári, Péter; Frenkel, Péter E. Benjamini-Schramm continuity of root moments of graph polynomials. (English) Zbl 1327.05159 Eur. J. Comb. 52, Part B, 302-320 (2016). MSC: 05C31 PDF BibTeX XML Cite \textit{P. Csikvári} and \textit{P. E. Frenkel}, Eur. J. Comb. 52, Part B, 302--320 (2016; Zbl 1327.05159) Full Text: DOI
Fadnavis, Sukhada A note on the shameful conjecture. (English) Zbl 1401.05151 Eur. J. Comb. 47, 115-122 (2015). MSC: 05C31 05C15 PDF BibTeX XML Cite \textit{S. Fadnavis}, Eur. J. Comb. 47, 115--122 (2015; Zbl 1401.05151) Full Text: DOI
Burgdorf, Sabine; Laurent, Monique; Piovesan, Teresa On the closure of the completely positive semidefinite cone and linear approximations to quantum colorings. (English) Zbl 1372.81026 Beigi, Salman (ed.) et al., 10th conference on the theory of quantum computation, communication and cryptography, TQC’15, Brussels, Belgium, May 20–22, 2015. Proceedings. Wadern: Schloss Dagstuhl – Leibniz Zentrum für Informatik (ISBN 978-3-939897-96-5). LIPIcs – Leibniz International Proceedings in Informatics 44, 127-146 (2015). MSC: 81P45 91A43 81P40 15B48 46L10 05C15 PDF BibTeX XML Cite \textit{S. Burgdorf} et al., LIPIcs -- Leibniz Int. Proc. Inform. 44, 127--146 (2015; Zbl 1372.81026) Full Text: DOI
Jackson, Bill Chromatic polynomials. (English) Zbl 1351.05078 Beineke, Lowell W. (ed.) et al., Topics in chromatic graph theory. Cambridge: Cambridge University Press (ISBN 978-1-107-03350-4/hbk; 978-1-139-51979-3/ebook). Encyclopedia of Mathematics and its Applications 156, 56-72 (2015). Reviewer: Niko Tratnik (Maribor) MSC: 05C15 05C31 82B20 PDF BibTeX XML Cite \textit{B. Jackson}, Encycl. Math. Appl. 156, 56--72 (2015; Zbl 1351.05078)
Abért, Miklós; Hubai, Tamás Benjamini-Schramm convergence and the distribution of chromatic roots for sparse graphs. (English) Zbl 1363.05118 Combinatorica 35, No. 2, 127-151 (2015). Reviewer: Ko-Wei Lih (Taipei) MSC: 05C31 05C60 05C15 05C42 PDF BibTeX XML Cite \textit{M. Abért} and \textit{T. Hubai}, Combinatorica 35, No. 2, 127--151 (2015; Zbl 1363.05118) Full Text: DOI arXiv
Hao, Cuiju; Zhang, Bingru Proof of adjoint factorizations and chromatic equivalence of graphs \(\rho_n^{G(i)}\bigcup G\) etc. (Chinese. English summary) Zbl 1349.05105 Math. Pract. Theory 45, No. 7, 223-230 (2015). MSC: 05C15 05C31 05C70 05C38 PDF BibTeX XML Cite \textit{C. Hao} and \textit{B. Zhang}, Math. Pract. Theory 45, No. 7, 223--230 (2015; Zbl 1349.05105)
Sazdanović, Radmila; Yip, Martha A categorification of the chromatic symmetric polynomial. (English. French summary) Zbl 1335.05186 Proceedings of the 27th international conference on formal power series and algebraic combinatorics, FPSAC 2015, Daejeon, South Korea, July 6–10, 2015. Nancy: The Association. Discrete Mathematics & Theoretical Computer Science (DMTCS). Discrete Mathematics and Theoretical Computer Science. Proceedings, 631-642 (2015). MSC: 05E05 05C31 05C15 PDF BibTeX XML Cite \textit{R. Sazdanović} and \textit{M. Yip}, in: Proceedings of the 27th international conference on formal power series and algebraic combinatorics, FPSAC 2015, Daejeon, South Korea, July 6--10, 2015. Nancy: The Association. Discrete Mathematics \& Theoretical Computer Science (DMTCS). 631--642 (2015; Zbl 1335.05186) Full Text: Link
Laurent, Monique; Piovesan, Teresa Conic approach to quantum graph parameters using linear optimization over the completely positive semidefinite cone. (English) Zbl 1329.15066 SIAM J. Optim. 25, No. 4, 2461-2493 (2015). MSC: 15B48 81P40 90C05 PDF BibTeX XML Cite \textit{M. Laurent} and \textit{T. Piovesan}, SIAM J. Optim. 25, No. 4, 2461--2493 (2015; Zbl 1329.15066) Full Text: DOI arXiv
Kishore, Anjaly; Sunitha, M. S. On injective chromatic polynomials of graphs. (English) Zbl 1325.05082 Discrete Math. Algorithms Appl. 7, No. 3, Article ID 1550035, 7 p. (2015). MSC: 05C15 05C31 05C76 05C35 PDF BibTeX XML Cite \textit{A. Kishore} and \textit{M. S. Sunitha}, Discrete Math. Algorithms Appl. 7, No. 3, Article ID 1550035, 7 p. (2015; Zbl 1325.05082) Full Text: DOI
Royle, Gordon F.; Sokal, Alan D. Linear bound in terms of maxmaxflow for the chromatic roots of series-parallel graphs. (English) Zbl 1323.05071 SIAM J. Discrete Math. 29, No. 4, 2117-2159 (2015). MSC: 05C31 05A20 05C15 05C21 05E99 30C15 37F10 37F45 82B20 PDF BibTeX XML Cite \textit{G. F. Royle} and \textit{A. D. Sokal}, SIAM J. Discrete Math. 29, No. 4, 2117--2159 (2015; Zbl 1323.05071) Full Text: DOI arXiv
Kaliszewski, Ryan Hook coefficients of chromatic functions. (English) Zbl 1323.05047 J. Comb. 6, No. 3, 327-337 (2015). MSC: 05C15 05C31 05E05 PDF BibTeX XML Cite \textit{R. Kaliszewski}, J. Comb. 6, No. 3, 327--337 (2015; Zbl 1323.05047) Full Text: DOI arXiv
Beck, Matthias; Meza, Erika; Nevarez, Bryan; Shine, Alana; Young, Michael The chromatic polynomials of signed Petersen graphs. (English) Zbl 1322.05073 Involve 8, No. 5, 825-831 (2015). MSC: 05C31 05C22 05A15 05C15 PDF BibTeX XML Cite \textit{M. Beck} et al., Involve 8, No. 5, 825--831 (2015; Zbl 1322.05073) Full Text: DOI arXiv