Mahoney, Thomas; Wiley, Chad An infinite family of sum-paint critical graphs. (English) Zbl 07311130 Graphs Comb. 36, No. 5, 1563-1571 (2020). MSC: 05C10 PDF BibTeX XML Cite \textit{T. Mahoney} and \textit{C. Wiley}, Graphs Comb. 36, No. 5, 1563--1571 (2020; Zbl 07311130) Full Text: DOI
Zhang, Donghan; Lu, You; Zhang, Shenggui Neighbor sum distinguishing total choosability of cubic graphs. (English) Zbl 07311129 Graphs Comb. 36, No. 5, 1545-1562 (2020). MSC: 05 68 PDF BibTeX XML Cite \textit{D. Zhang} et al., Graphs Comb. 36, No. 5, 1545--1562 (2020; Zbl 07311129) Full Text: DOI
Drgas-Burchardt, Ewa; Furmańczyk, Hanna; Sidorowicz, Elżbieta Equitable improper choosability of graphs. (English) Zbl 07263633 Theor. Comput. Sci. 844, 34-45 (2020). MSC: 68Q PDF BibTeX XML Cite \textit{E. Drgas-Burchardt} et al., Theor. Comput. Sci. 844, 34--45 (2020; Zbl 07263633) Full Text: DOI
Hou, Jianfeng; Zhu, Hongguo Choosability with union separation of triangle-free planar graphs. (English) Zbl 07257958 Discrete Math. 343, No. 12, Article ID 112137, 10 p. (2020). Reviewer: Nikolaos Fountoulakis (Birmingham) MSC: 05C10 05C15 PDF BibTeX XML Cite \textit{J. Hou} and \textit{H. Zhu}, Discrete Math. 343, No. 12, Article ID 112137, 10 p. (2020; Zbl 07257958) Full Text: DOI
Lu, You; Li, Chong; Miao, Zheng Ke Weight choosability of graphs with maximum degree 4. (English) Zbl 1441.05081 Acta Math. Sin., Engl. Ser. 36, No. 6, 723-732 (2020). MSC: 05C15 05C22 PDF BibTeX XML Cite \textit{Y. Lu} et al., Acta Math. Sin., Engl. Ser. 36, No. 6, 723--732 (2020; Zbl 1441.05081) Full Text: DOI
Bensmail, Julien; Lyngsie, Kasper 1-2-3 Conjecture in digraphs: more results and directions. (English) Zbl 1443.05079 Discrete Appl. Math. 284, 124-137 (2020). MSC: 05C20 05C15 PDF BibTeX XML Cite \textit{J. Bensmail} and \textit{K. Lyngsie}, Discrete Appl. Math. 284, 124--137 (2020; Zbl 1443.05079) Full Text: DOI
Sun, Yingcai; Chen, Min Acyclic 4-choosability of planar graphs without 4-cycles. (English) Zbl 07217126 Czech. Math. J. 70, No. 1, 161-178 (2020). MSC: 05C10 05C15 PDF BibTeX XML Cite \textit{Y. Sun} and \textit{M. Chen}, Czech. Math. J. 70, No. 1, 161--178 (2020; Zbl 07217126) Full Text: DOI
Sun, Lin Neighbor sum distinguishing total choosability of planar graphs without adjacent special 5-cycles. (English) Zbl 07201686 Discrete Appl. Math. 279, 146-153 (2020). MSC: 05 PDF BibTeX XML Cite \textit{L. Sun}, Discrete Appl. Math. 279, 146--153 (2020; Zbl 07201686) Full Text: DOI
Kaul, Hemanshu; Mudrock, Jeffrey A.; Pelsmajer, Michael J.; Reiniger, Benjamin A simple characterization of proportionally 2-choosable graphs. (English) Zbl 1439.05087 Graphs Comb. 36, No. 3, 679-687 (2020). MSC: 05C15 PDF BibTeX XML Cite \textit{H. Kaul} et al., Graphs Comb. 36, No. 3, 679--687 (2020; Zbl 1439.05087) Full Text: DOI
Chen, Min; Fan, Yingying; Raspaud, André; Shiu, Wai Chee; Wang, Weifan Choosability with separation of planar graphs without prescribed cycles. (English) Zbl 1433.05114 Appl. Math. Comput. 367, Article ID 124756, 17 p. (2020). MSC: 05C15 05C10 05C38 PDF BibTeX XML Cite \textit{M. Chen} et al., Appl. Math. Comput. 367, Article ID 124756, 17 p. (2020; Zbl 1433.05114) Full Text: DOI
Zhu, Xuding A refinement of choosability of graphs. (English) Zbl 1430.05046 J. Comb. Theory, Ser. B 141, 143-164 (2020). MSC: 05C15 05C22 05C10 05A17 PDF BibTeX XML Cite \textit{X. Zhu}, J. Comb. Theory, Ser. B 141, 143--164 (2020; Zbl 1430.05046) Full Text: DOI arXiv
Song, Wen-Yao; Miao, Lian-Ying; Duan, Yuan-Yuan Neighbor sum distinguishing total choosability of IC-planar graphs. (English) Zbl 1430.05023 Discuss. Math., Graph Theory 40, No. 1, 331-344 (2020). MSC: 05C10 05C62 05C15 05C35 05C07 PDF BibTeX XML Cite \textit{W.-Y. Song} et al., Discuss. Math., Graph Theory 40, No. 1, 331--344 (2020; Zbl 1430.05023) Full Text: DOI
Cranston, Daniel W. A characterization of \((4,2)\)-choosable graphs. (English) Zbl 1443.05063 J. Graph Theory 92, No. 4, 460-487 (2019). MSC: 05C15 PDF BibTeX XML Cite \textit{D. W. Cranston}, J. Graph Theory 92, No. 4, 460--487 (2019; Zbl 1443.05063) Full Text: DOI
Dabrowski, Konrad K.; Dross, François; Johnson, Matthew; Paulusma, Daniël Filling the complexity gaps for colouring planar and bounded degree graphs. (English) Zbl 1443.05064 J. Graph Theory 92, No. 4, 377-393 (2019). MSC: 05C15 05C10 05C07 05C35 PDF BibTeX XML Cite \textit{K. K. Dabrowski} et al., J. Graph Theory 92, No. 4, 377--393 (2019; Zbl 1443.05064) Full Text: DOI
Hendrey, Kevin; Wood, David R. Defective and clustered choosability of sparse graphs. (English) Zbl 1436.05038 Comb. Probab. Comput. 28, No. 5, 791-810 (2019). MSC: 05C15 05C42 05C07 PDF BibTeX XML Cite \textit{K. Hendrey} and \textit{D. R. Wood}, Comb. Probab. Comput. 28, No. 5, 791--810 (2019; Zbl 1436.05038) Full Text: DOI
Dong, Aijun; Wu, Jianliang Equitable coloring and equitable choosability of planar graphs without chordal 4- and 6-cycles. (English) Zbl 1430.05035 Discrete Math. Theor. Comput. Sci. 21, No. 3, Paper No. 16, 22 p. (2019). MSC: 05C15 05C10 05C70 05C38 PDF BibTeX XML Cite \textit{A. Dong} and \textit{J. Wu}, Discrete Math. Theor. Comput. Sci. 21, No. 3, Paper No. 16, 22 p. (2019; Zbl 1430.05035) Full Text: DOI arXiv
Chen, Min; Raspaud, André Acyclic improper choosability of subcubic graphs. (English) Zbl 1428.05100 Appl. Math. Comput. 356, 92-98 (2019). MSC: 05C15 05C10 PDF BibTeX XML Cite \textit{M. Chen} and \textit{A. Raspaud}, Appl. Math. Comput. 356, 92--98 (2019; Zbl 1428.05100) Full Text: DOI
Dross, François; Lužar, Borut; Maceková, Mária; Soták, Roman Note on 3-choosability of planar graphs with maximum degree 4. (English) Zbl 1419.05052 Discrete Math. 342, No. 11, 3123-3129 (2019). MSC: 05C10 05C15 PDF BibTeX XML Cite \textit{F. Dross} et al., Discrete Math. 342, No. 11, 3123--3129 (2019; Zbl 1419.05052) Full Text: DOI arXiv
Kaul, Hemanshu; Mudrock, Jeffrey A.; Pelsmajer, Michael J.; Reiniger, Benjamin Proportional choosability: a new list analogue of equitable coloring. (English) Zbl 1418.05064 Discrete Math. 342, No. 8, 2371-2383 (2019). MSC: 05C15 PDF BibTeX XML Cite \textit{H. Kaul} et al., Discrete Math. 342, No. 8, 2371--2383 (2019; Zbl 1418.05064) Full Text: DOI arXiv
Tajbakhsh, Khosro On chromatic numbers of two extensions of planar graphs. (English) Zbl 1417.05079 Acta Math. Vietnam. 44, No. 2, 493-500 (2019). MSC: 05C15 05C10 PDF BibTeX XML Cite \textit{K. Tajbakhsh}, Acta Math. Vietnam. 44, No. 2, 493--500 (2019; Zbl 1417.05079) Full Text: DOI
Kang, Sungsik; Park, Boram On incidence choosability of cubic graphs. (English) Zbl 1414.05118 Discrete Math. 342, No. 6, 1828-1837 (2019). MSC: 05C15 PDF BibTeX XML Cite \textit{S. Kang} and \textit{B. Park}, Discrete Math. 342, No. 6, 1828--1837 (2019; Zbl 1414.05118) Full Text: DOI arXiv
Wang, Yue; Wu, Jianliang; Yang, Donglei On the \((3, 1)\)-choosability of planar graphs without adjacent cycles of length \(5, 6, 7\). (English) Zbl 1414.05096 Discrete Math. 342, No. 6, 1782-1791 (2019). MSC: 05C10 05C15 05C38 PDF BibTeX XML Cite \textit{Y. Wang} et al., Discrete Math. 342, No. 6, 1782--1791 (2019; Zbl 1414.05096) Full Text: DOI
Wang, Huijuan; Pardalos, Panos M.; Liu, Bin Optimal channel assignment with list-edge coloring. (English) Zbl 1420.05062 J. Comb. Optim. 38, No. 1, 197-207 (2019). MSC: 05C15 05C10 05C30 PDF BibTeX XML Cite \textit{H. Wang} et al., J. Comb. Optim. 38, No. 1, 197--207 (2019; Zbl 1420.05062) Full Text: DOI
Bonamy, Marthe; Cranston, Daniel W.; Postle, Luke Planar graphs of girth at least five are square \((\delta + 2)\)-choosable. (English) Zbl 1402.05043 J. Comb. Theory, Ser. B 134, 218-238 (2019). MSC: 05C10 05C15 05C07 PDF BibTeX XML Cite \textit{M. Bonamy} et al., J. Comb. Theory, Ser. B 134, 218--238 (2019; Zbl 1402.05043) Full Text: DOI arXiv
Kaul, Hemanshu; Mudrock, Jeffrey A.; Pelsmajer, Michael J. Total equitable list coloring. (English) Zbl 1402.05071 Graphs Comb. 34, No. 6, 1637-1649 (2018). MSC: 05C15 PDF BibTeX XML Cite \textit{H. Kaul} et al., Graphs Comb. 34, No. 6, 1637--1649 (2018; Zbl 1402.05071) Full Text: DOI arXiv
Chappell, Glenn G.; Hartman, Chris Path choosability of planar graphs. (English) Zbl 1440.05082 Electron. J. Comb. 25, No. 4, Research Paper P4.33, 18 p. (2018). MSC: 05C15 05C10 05C38 PDF BibTeX XML Cite \textit{G. G. Chappell} and \textit{C. Hartman}, Electron. J. Comb. 25, No. 4, Research Paper P4.33, 18 p. (2018; Zbl 1440.05082) Full Text: Link
Lv, Jing; Huang, Danjun A new sufficient condition for a toroidal graph to be 4-choosable. (English) Zbl 1393.05120 Discrete Math. 341, No. 10, 2878-2882 (2018). MSC: 05C15 05C10 05C38 PDF BibTeX XML Cite \textit{J. Lv} and \textit{D. Huang}, Discrete Math. 341, No. 10, 2878--2882 (2018; Zbl 1393.05120) Full Text: DOI
Wang, Huijuan; Liu, Bin; Gai, Ling; Du, Hongwei; Wu, Jianliang Minimum choosability of planar graphs. (English) Zbl 1441.05064 J. Comb. Optim. 36, No. 1, 13-22 (2018). MSC: 05C10 05C15 PDF BibTeX XML Cite \textit{H. Wang} et al., J. Comb. Optim. 36, No. 1, 13--22 (2018; Zbl 1441.05064) Full Text: DOI
Chen, Min; Lih, Ko-Wei; Wang, Weifan On choosability with separation of planar graphs without adjacent short cycles. (English) Zbl 1391.05104 Bull. Malays. Math. Sci. Soc. (2) 41, No. 3, 1507-1518 (2018). MSC: 05C15 05C10 05C38 05C12 PDF BibTeX XML Cite \textit{M. Chen} et al., Bull. Malays. Math. Sci. Soc. (2) 41, No. 3, 1507--1518 (2018; Zbl 1391.05104) Full Text: DOI
Dong, Aijun; Zhang, Xin Equitable coloring and equitable choosability of graphs with small maximum average degree. (English) Zbl 1391.05105 Discuss. Math., Graph Theory 38, No. 3, 829-839 (2018). MSC: 05C15 PDF BibTeX XML Cite \textit{A. Dong} and \textit{X. Zhang}, Discuss. Math., Graph Theory 38, No. 3, 829--839 (2018; Zbl 1391.05105) Full Text: DOI
Kim, Jaehoon; Ok, Seongmin Dynamic choosability of triangle-free graphs and sparse random graphs. (English) Zbl 1386.05060 J. Graph Theory 87, No. 3, 347-355 (2018). MSC: 05C15 05C42 05C80 PDF BibTeX XML Cite \textit{J. Kim} and \textit{S. Ok}, J. Graph Theory 87, No. 3, 347--355 (2018; Zbl 1386.05060) Full Text: DOI
Mahoney, Thomas; Puleo, Gregory J.; West, Douglas B. Online sum-paintability: the slow-coloring game. (English) Zbl 1380.05131 Discrete Math. 341, No. 4, 1084-1093 (2018). MSC: 05C57 05C15 91A43 91A05 PDF BibTeX XML Cite \textit{T. Mahoney} et al., Discrete Math. 341, No. 4, 1084--1093 (2018; Zbl 1380.05131) Full Text: DOI
Sun, Yingcai; Chen, Min; Chen, Dong Acyclic 4-choosability of planar graphs without intersecting short cycles. (English) Zbl 1380.05081 Discrete Math. Algorithms Appl. 10, No. 1, Article ID 1850014, 11 p. (2018). MSC: 05C15 05C10 05C12 PDF BibTeX XML Cite \textit{Y. Sun} et al., Discrete Math. Algorithms Appl. 10, No. 1, Article ID 1850014, 11 p. (2018; Zbl 1380.05081) Full Text: DOI
Cheng, Xiaohan; Wu, Jianliang The adjacent vertex distinguishing total choosability of planar graphs with maximum degree at least eleven. (English) Zbl 1386.05036 J. Comb. Optim. 35, No. 1, 1-13 (2018). MSC: 05C10 05C07 05C35 05C15 PDF BibTeX XML Cite \textit{X. Cheng} and \textit{J. Wu}, J. Comb. Optim. 35, No. 1, 1--13 (2018; Zbl 1386.05036) Full Text: DOI
Kumbhat, Mohit; Moss, Kevin; Stolee, Derrick Choosability with union separation. (English) Zbl 1378.05064 Discrete Math. 341, No. 3, 600-605 (2018). MSC: 05C15 PDF BibTeX XML Cite \textit{M. Kumbhat} et al., Discrete Math. 341, No. 3, 600--605 (2018; Zbl 1378.05064) Full Text: DOI arXiv
Chen, Min; Fan, Yingying; Wang, Yiqiao; Wang, Weifan A sufficient condition for planar graphs to be (3,1)-choosable. (English) Zbl 1378.05031 J. Comb. Optim. 34, No. 4, 987-1011 (2017). MSC: 05C10 05C15 05C38 PDF BibTeX XML Cite \textit{M. Chen} et al., J. Comb. Optim. 34, No. 4, 987--1011 (2017; Zbl 1378.05031) Full Text: DOI
Berikkyzy, Zhanar; Cox, Christopher; Dairyko, Michael; Hogenson, Kirsten; Kumbhat, Mohit; Lidický, Bernard; Messerschmidt, Kacy; Moss, Kevin; Nowak, Kathleen; Palmowski, Kevin F.; Stolee, Derrick \((4,2)\)-choosability of planar graphs with forbidden structures. (English) Zbl 1371.05072 Graphs Comb. 33, No. 4, 751-787 (2017). MSC: 05C15 05C10 PDF BibTeX XML Cite \textit{Z. Berikkyzy} et al., Graphs Comb. 33, No. 4, 751--787 (2017; Zbl 1371.05072) Full Text: DOI
Cranston, Daniel W.; Rabern, Landon Beyond degree choosability. (English) Zbl 1369.05070 Electron. J. Comb. 24, No. 3, Research Paper P3.29, 14 p. (2017). MSC: 05C15 05C40 05C05 PDF BibTeX XML Cite \textit{D. W. Cranston} and \textit{L. Rabern}, Electron. J. Comb. 24, No. 3, Research Paper P3.29, 14 p. (2017; Zbl 1369.05070) Full Text: Link arXiv
Wang, Wei; Qian, Jianguo; Yan, Zhidan Towards a version of Ohba’s conjecture for improper colorings. (English) Zbl 1368.05057 Graphs Comb. 33, No. 2, 489-501 (2017). MSC: 05C15 PDF BibTeX XML Cite \textit{W. Wang} et al., Graphs Comb. 33, No. 2, 489--501 (2017; Zbl 1368.05057) Full Text: DOI
Petrov, Fedor General parity result and cycle-plus-triangles graphs. (English) Zbl 1368.05054 J. Graph Theory 85, No. 4, 803-807 (2017). MSC: 05C15 05C45 05C38 PDF BibTeX XML Cite \textit{F. Petrov}, J. Graph Theory 85, No. 4, 803--807 (2017; Zbl 1368.05054) Full Text: DOI
Choi, Ilkyoo Toroidal graphs containing neither \(K_5^-\) nor 6-cycles are 4-choosable. (English) Zbl 1365.05086 J. Graph Theory 85, No. 1, 172-186 (2017). MSC: 05C15 05C35 PDF BibTeX XML Cite \textit{I. Choi}, J. Graph Theory 85, No. 1, 172--186 (2017; Zbl 1365.05086) Full Text: DOI arXiv
Tang, Yunfang; Zhu, Xuding Total weight choosability of graphs with bounded maximum average degree. (English) Zbl 1362.05057 Discrete Math. 340, No. 8, 2033-2042 (2017). MSC: 05C22 05C07 PDF BibTeX XML Cite \textit{Y. Tang} and \textit{X. Zhu}, Discrete Math. 340, No. 8, 2033--2042 (2017; Zbl 1362.05057) Full Text: DOI
Xu, Renyu; Wu, Jian-Liang A sufficient condition for a planar graph to be 4-choosable. (English) Zbl 1361.05035 Discrete Appl. Math. 224, 120-122 (2017). MSC: 05C10 05C15 05C38 PDF BibTeX XML Cite \textit{R. Xu} and \textit{J.-L. Wu}, Discrete Appl. Math. 224, 120--122 (2017; Zbl 1361.05035) Full Text: DOI
Golovach, Petr A.; Johnson, Matthew; Paulusma, Daniël; Song, Jian A survey on the computational complexity of coloring graphs with forbidden subgraphs. (English) Zbl 1359.05039 J. Graph Theory 84, No. 4, 331-363 (2017). MSC: 05C15 05C60 PDF BibTeX XML Cite \textit{P. A. Golovach} et al., J. Graph Theory 84, No. 4, 331--363 (2017; Zbl 1359.05039) Full Text: DOI
Przybyło, Jakub; Raspaud, André; Woźniak, Mariusz On weight choosabilities of graphs with bounded maximum average degree. (English) Zbl 1358.05165 Discrete Appl. Math. 217, Part 3, 663-672 (2017). MSC: 05C40 05C15 PDF BibTeX XML Cite \textit{J. Przybyło} et al., Discrete Appl. Math. 217, Part 3, 663--672 (2017; Zbl 1358.05165) Full Text: DOI
Tang, Yunfang; Zhu, Xuding Total weight choosability of Mycielski graphs. (English) Zbl 1364.05034 J. Comb. Optim. 33, No. 1, 165-182 (2017). MSC: 05C22 PDF BibTeX XML Cite \textit{Y. Tang} and \textit{X. Zhu}, J. Comb. Optim. 33, No. 1, 165--182 (2017; Zbl 1364.05034) Full Text: DOI
Wang, Jihui; Cai, Jiansheng; Qiu, Baojian Neighbor sum distinguishing total choosability of planar graphs without adjacent triangles. (English) Zbl 1357.05027 Theor. Comput. Sci. 661, 1-7 (2017). MSC: 05C10 05C15 PDF BibTeX XML Cite \textit{J. Wang} et al., Theor. Comput. Sci. 661, 1--7 (2017; Zbl 1357.05027) Full Text: DOI
Li, Xiaoyan; Chen, Min; Wang, Yingqian On 3-choosability of planar graphs without 5-, 6- or 7-cycles. (English) Zbl 1374.05070 Adv. Math., Beijing 45, No. 4, 491-499 (2016). MSC: 05C10 05C15 05C38 PDF BibTeX XML Cite \textit{X. Li} et al., Adv. Math., Beijing 45, No. 4, 491--499 (2016; Zbl 1374.05070) Full Text: DOI
Gravier, Sylvain; Maffray, Frédéric; Pastor, Lucas On the choosability of claw-free perfect graphs. (English) Zbl 1353.05055 Graphs Comb. 32, No. 6, 2393-2413 (2016). MSC: 05C17 05C15 PDF BibTeX XML Cite \textit{S. Gravier} et al., Graphs Comb. 32, No. 6, 2393--2413 (2016; Zbl 1353.05055) Full Text: DOI
Zhu, Xiaoying; Duan, Ziming A note on choice number of some planar triangle-free graphs. (English) Zbl 1363.05063 J. Fudan Univ., Nat. Sci. 55, No. 3, 284-287, 297 (2016). MSC: 05C10 05C15 PDF BibTeX XML Cite \textit{X. Zhu} and \textit{Z. Duan}, J. Fudan Univ., Nat. Sci. 55, No. 3, 284--287, 297 (2016; Zbl 1363.05063)
Yao, Jingjing; Shao, Zeling; Xu, Changqing Neighbor sum distinguishing total choosability of graphs with \(\Delta = 3\). (English) Zbl 1363.05087 Adv. Math., Beijing 45, No. 3, 343-348 (2016). MSC: 05C15 PDF BibTeX XML Cite \textit{J. Yao} et al., Adv. Math., Beijing 45, No. 3, 343--348 (2016; Zbl 1363.05087) Full Text: DOI
Wendland, Alex Coloring of plane graphs with unique maximal colors on faces. (English) Zbl 1352.05073 J. Graph Theory 83, No. 4, 359-371 (2016). Reviewer: Hanna Furmańczyk (Gdańsk) MSC: 05C15 05C10 05C35 PDF BibTeX XML Cite \textit{A. Wendland}, J. Graph Theory 83, No. 4, 359--371 (2016; Zbl 1352.05073) Full Text: DOI
Chuang, H.; Lai, H.-J.; Omidi, G. R.; Zakeri, N. On group choosability of graphs. I. (English) Zbl 1413.05106 Ars Comb. 126, 195-209 (2016). MSC: 05C15 05C20 PDF BibTeX XML Cite \textit{H. Chuang} et al., Ars Comb. 126, 195--209 (2016; Zbl 1413.05106)
Yao, Jing Jing; Kong, Hai Rong Neighbor sum distinguishing total choosability of graphs with larger maximum average degree. (English) Zbl 1413.05353 Ars Comb. 125, 347-360 (2016). MSC: 05C78 05C07 PDF BibTeX XML Cite \textit{J. J. Yao} and \textit{H. R. Kong}, Ars Comb. 125, 347--360 (2016; Zbl 1413.05353)
Dong, Aijun; Zou, Qingsong; Li, Guojun Equitable and list equitable colorings of graphs with bounded maximum average degree. (English) Zbl 1413.05107 Ars Comb. 124, 303-311 (2016). MSC: 05C15 05C07 PDF BibTeX XML Cite \textit{A. Dong} et al., Ars Comb. 124, 303--311 (2016; Zbl 1413.05107)
Wang, Huijuan; Liu, Bin; Zhang, Xin; Wu, Lidong; Wu, Weili; Gao, Hongwei List edge and list total coloring of planar graphs with maximum degree 8. (English) Zbl 1348.05086 J. Comb. Optim. 32, No. 1, 188-197 (2016). MSC: 05C15 05C10 05C07 PDF BibTeX XML Cite \textit{H. Wang} et al., J. Comb. Optim. 32, No. 1, 188--197 (2016; Zbl 1348.05086) Full Text: DOI
Chen, Min; Raspaud, André; Wang, Weifan A \((3,1)^\ast\)-choosable theorem on planar graphs. (English) Zbl 1348.05058 J. Comb. Optim. 32, No. 3, 927-940 (2016). MSC: 05C10 05C38 PDF BibTeX XML Cite \textit{M. Chen} et al., J. Comb. Optim. 32, No. 3, 927--940 (2016; Zbl 1348.05058) Full Text: DOI
Qu, Cunquan; Wang, Guanghui; Yan, Guiying; Yu, Xiaowei Neighbor sum distinguishing total choosability of planar graphs. (English) Zbl 1348.05082 J. Comb. Optim. 32, No. 3, 906-916 (2016). MSC: 05C15 05C10 PDF BibTeX XML Cite \textit{C. Qu} et al., J. Comb. Optim. 32, No. 3, 906--916 (2016; Zbl 1348.05082) Full Text: DOI
Li, Xiaoyan; Wang, Yingqian A note on 3-choosability of planar graphs. (Chinese. English summary) Zbl 1363.05050 J. Zhejiang Norm. Univ., Nat. Sci. 39, No. 1, 13-17 (2016). MSC: 05C10 05C38 PDF BibTeX XML Cite \textit{X. Li} and \textit{Y. Wang}, J. Zhejiang Norm. Univ., Nat. Sci. 39, No. 1, 13--17 (2016; Zbl 1363.05050) Full Text: DOI
Cheng, Panpan; Chen, Min; Wang, Yingqian Planar graphs without 4-cycles adjacent to triangles are 4-choosable. (English) Zbl 1343.05053 Discrete Math. 339, No. 12, 3052-3057 (2016). MSC: 05C10 PDF BibTeX XML Cite \textit{P. Cheng} et al., Discrete Math. 339, No. 12, 3052--3057 (2016; Zbl 1343.05053) Full Text: DOI
Hu, Xiaoxue; Wang, Weifan; Shiu, Wai Chee; Wang, Yiqiao Plane graphs with maximum degree 9 are entirely 11-choosable. (English) Zbl 1339.05074 Discrete Math. 339, No. 11, 2742-2753 (2016). MSC: 05C10 05C07 05C15 PDF BibTeX XML Cite \textit{X. Hu} et al., Discrete Math. 339, No. 11, 2742--2753 (2016; Zbl 1339.05074) Full Text: DOI
Tang, Yunfang; Wong, Tsai-Lien; Zhu, Xuding Total weight choosability of cone graphs. (English) Zbl 1339.05172 Graphs Comb. 32, No. 3, 1203-1216 (2016). MSC: 05C22 PDF BibTeX XML Cite \textit{Y. Tang} et al., Graphs Comb. 32, No. 3, 1203--1216 (2016; Zbl 1339.05172) Full Text: DOI
Aubry, Yves; Godin, Jean-Christophe; Togni, Olivier Free choosability of outerplanar graphs. (English) Zbl 1339.05065 Graphs Comb. 32, No. 3, 851-859 (2016). MSC: 05C10 05C15 05C38 PDF BibTeX XML Cite \textit{Y. Aubry} et al., Graphs Comb. 32, No. 3, 851--859 (2016; Zbl 1339.05065) Full Text: DOI
Zhang, Haihui A note on 3-choosability of planar graphs related to Montanssier’s conjecture. (English) Zbl 1337.05045 Can. Math. Bull. 59, No. 2, 440-448 (2016). MSC: 05C15 05C10 05C38 PDF BibTeX XML Cite \textit{H. Zhang}, Can. Math. Bull. 59, No. 2, 440--448 (2016; Zbl 1337.05045) Full Text: DOI
Zhang, Haihui \((3, 1)^*\)-choosability of graphs of nonnegative characteristic without intersecting short cycles. (English) Zbl 1338.05096 Proc. Indian Acad. Sci., Math. Sci. 126, No. 2, 159-165 (2016). MSC: 05C15 05C78 PDF BibTeX XML Cite \textit{H. Zhang}, Proc. Indian Acad. Sci., Math. Sci. 126, No. 2, 159--165 (2016; Zbl 1338.05096) Full Text: DOI
Wang, Jihui; Cai, Jiansheng; Ma, Qiaoling Neighbor sum distinguishing total choosability of planar graphs without 4-cycles. (English) Zbl 1335.05051 Discrete Appl. Math. 206, 215-219 (2016). MSC: 05C10 05C15 PDF BibTeX XML Cite \textit{J. Wang} et al., Discrete Appl. Math. 206, 215--219 (2016; Zbl 1335.05051) Full Text: DOI
Wang, Weifan; Wu, Tingting; Hu, Xiaoxue; Wang, Yiqiao The entire choosability of plane graphs. (English) Zbl 1336.05035 J. Comb. Optim. 31, No. 3, 1221-1240 (2016). MSC: 05C10 05C07 05C35 PDF BibTeX XML Cite \textit{W. Wang} et al., J. Comb. Optim. 31, No. 3, 1221--1240 (2016; Zbl 1336.05035) Full Text: DOI
Wang, Huijuan; Wu, Lidong; Zhang, Xin; Wu, Weili; Liu, Bin A note on the minimum number of choosability of planar graphs. (English) Zbl 1344.90065 J. Comb. Optim. 31, No. 3, 1013-1022 (2016). MSC: 90C35 05C15 90C27 PDF BibTeX XML Cite \textit{H. Wang} et al., J. Comb. Optim. 31, No. 3, 1013--1022 (2016; Zbl 1344.90065) Full Text: DOI
Dabrowski, Konrad K.; Dross, François; Johnson, Matthew; Paulusma, Daniël Filling the complexity gaps for colouring planar and bounded degree graphs. (English) Zbl 06562477 Lipták, Zsuzsanna (ed.) et al., Combinatorial algorithms. 26th international workshop, IWOCA 2015, Verona, Italy, October 5–7, 2015. Revised selected papers. Cham: Springer (ISBN 978-3-319-29515-2/pbk; 978-3-319-29516-9/ebook). Lecture Notes in Computer Science 9538, 100-111 (2016). MSC: 68Rxx 68Wxx PDF BibTeX XML Cite \textit{K. K. Dabrowski} et al., Lect. Notes Comput. Sci. 9538, 100--111 (2016; Zbl 06562477) Full Text: DOI
Jin, Ligang; Kang, Yingli; Steffen, Eckhard Choosability in signed planar graphs. (English) Zbl 1327.05082 Eur. J. Comb. 52, Part A, 234-243 (2016). MSC: 05C10 PDF BibTeX XML Cite \textit{L. Jin} et al., Eur. J. Comb. 52, Part A, 234--243 (2016; Zbl 1327.05082) Full Text: DOI arXiv
Zhang, Haihui The result on \((3,1)^\ast \)-choosability of graphs of nonnegative characteristic without 4-cycles and intersecting triangles. (English) Zbl 1363.05088 Ars Comb. 121, 353-360 (2015). MSC: 05C15 05C78 PDF BibTeX XML Cite \textit{H. Zhang}, Ars Comb. 121, 353--360 (2015; Zbl 1363.05088)
Bu, Yuehua; Lu, Xia The choosability of the 2-distance coloring of a graph. (Chinese. English summary) Zbl 1349.05101 J. Zhejiang Norm. Univ., Nat. Sci. 38, No. 3, 279-285 (2015). MSC: 05C15 PDF BibTeX XML Cite \textit{Y. Bu} and \textit{X. Lu}, J. Zhejiang Norm. Univ., Nat. Sci. 38, No. 3, 279--285 (2015; Zbl 1349.05101) Full Text: DOI
Zhu, Xiaoying; Wang, Cuiqi The 3-choosability of special plane graphs with girth of 4 at least. (Chinese. English summary) Zbl 1349.05081 J. Lanzhou Univ. Technol. 41, No. 5, 167-169 (2015). MSC: 05C10 05C15 PDF BibTeX XML Cite \textit{X. Zhu} and \textit{C. Wang}, J. Lanzhou Univ. Technol. 41, No. 5, 167--169 (2015; Zbl 1349.05081)
Mahoney, Thomas; Tomlinson, Charles; Wise, Jennifer I. Families of online sum-choice-greedy graphs. (English) Zbl 1327.05119 Graphs Comb. 31, No. 6, 2309-2317 (2015). MSC: 05C15 05C10 PDF BibTeX XML Cite \textit{T. Mahoney} et al., Graphs Comb. 31, No. 6, 2309--2317 (2015; Zbl 1327.05119) Full Text: DOI
Janssen, Jeannette; Mathew, Rogers; Rajendraprasad, Deepak Partial list colouring of certain graphs. (English) Zbl 1323.05046 Electron. J. Comb. 22, No. 3, Research Paper P3.41, 9 p. (2015). MSC: 05C15 PDF BibTeX XML Cite \textit{J. Janssen} et al., Electron. J. Comb. 22, No. 3, Research Paper P3.41, 9 p. (2015; Zbl 1323.05046) Full Text: Link arXiv
Wang, Guanghui; Yan, Guiying An improved upper bound on edge weight choosability of graphs. (English) Zbl 1326.05051 Graphs Comb. 31, No. 5, 1789-1793 (2015). MSC: 05C15 05C22 05C78 PDF BibTeX XML Cite \textit{G. Wang} and \textit{G. Yan}, Graphs Comb. 31, No. 5, 1789--1793 (2015; Zbl 1326.05051) Full Text: DOI
Carraher, James M.; Mahoney, Thomas; Puleo, Gregory J.; West, Douglas B. Sum-paintability of generalized theta-graphs. (English) Zbl 1322.05056 Graphs Comb. 31, No. 5, 1325-1334 (2015). MSC: 05C15 PDF BibTeX XML Cite \textit{J. M. Carraher} et al., Graphs Comb. 31, No. 5, 1325--1334 (2015; Zbl 1322.05056) Full Text: DOI
Cai, Jiansheng List edge coloring of planar graphs without non-induced 6-cycles. (English) Zbl 1317.05051 Graphs Comb. 31, No. 4, 827-832 (2015). MSC: 05C15 PDF BibTeX XML Cite \textit{J. Cai}, Graphs Comb. 31, No. 4, 827--832 (2015; Zbl 1317.05051) Full Text: DOI
Kierstead, H. A.; Lidický, Bernard On choosability with separation of planar graphs with lists of different sizes. (English) Zbl 1315.05038 Discrete Math. 338, No. 10, 1779-1783 (2015). MSC: 05C10 05C15 PDF BibTeX XML Cite \textit{H. A. Kierstead} and \textit{B. Lidický}, Discrete Math. 338, No. 10, 1779--1783 (2015; Zbl 1315.05038) Full Text: DOI arXiv
Noel, Jonathan A.; Reed, Bruce A.; Wu, Hehui A proof of a conjecture of Ohba. (English) Zbl 1320.05045 J. Graph Theory 79, No. 2, 86-102 (2015). Reviewer: Peter Horák (Tacoma) MSC: 05C15 PDF BibTeX XML Cite \textit{J. A. Noel} et al., J. Graph Theory 79, No. 2, 86--102 (2015; Zbl 1320.05045) Full Text: DOI arXiv
Akbari, Saieed; Kiani, Dariush; Mohammadi, Fatemeh; Moradi, Somayeh; Rahmati, Farhad An algebraic criterion for the choosability of graphs. (English) Zbl 1312.05046 Graphs Comb. 31, No. 3, 497-506 (2015). MSC: 05C15 PDF BibTeX XML Cite \textit{S. Akbari} et al., Graphs Comb. 31, No. 3, 497--506 (2015; Zbl 1312.05046) Full Text: DOI
Jing, Yubo; Wang, Yingqian (3, 1)-choosability of toroidal graphs with some forbidden short cycles. (English) Zbl 1311.05091 Discrete Appl. Math. 184, 243-247 (2015). MSC: 05C38 05C10 PDF BibTeX XML Cite \textit{Y. Jing} and \textit{Y. Wang}, Discrete Appl. Math. 184, 243--247 (2015; Zbl 1311.05091) Full Text: DOI
Postle, Luke; Thomas, Robin Five-list-coloring graphs on surfaces. I. Two lists of size two in planar graphs. (English) Zbl 1307.05076 J. Comb. Theory, Ser. B 111, 234-241 (2015). MSC: 05C15 05C10 PDF BibTeX XML Cite \textit{L. Postle} and \textit{R. Thomas}, J. Comb. Theory, Ser. B 111, 234--241 (2015; Zbl 1307.05076) Full Text: DOI arXiv
Kim, Seog-Jin; Kwon, Young Soo; Park, Boram Chromatic-choosability of the power of graphs. (English) Zbl 1303.05064 Discrete Appl. Math. 180, 120-125 (2015). MSC: 05C15 PDF BibTeX XML Cite \textit{S.-J. Kim} et al., Discrete Appl. Math. 180, 120--125 (2015; Zbl 1303.05064) Full Text: DOI arXiv
Noel, Jonathan A.; West, Douglas B.; Wu, Hehui; Zhu, Xuding Beyond Ohba’s conjecture: a bound on the choice number of \(k\)-chromatic graphs with \(n\) vertices. (English) Zbl 1301.05132 Eur. J. Comb. 43, 295-305 (2015). MSC: 05C15 PDF BibTeX XML Cite \textit{J. A. Noel} et al., Eur. J. Comb. 43, 295--305 (2015; Zbl 1301.05132) Full Text: DOI arXiv
Zhou, Haiying; Shiu, Wai Chee; Lam, Peter Che Bor Bounds on \(L (2, 1)\)-choice number of Cartesian products of paths and spiders. (English) Zbl 1329.05254 J. Comb. Number Theory 6, No. 3, 219-231 (2014). MSC: 05C76 05C78 05C15 PDF BibTeX XML Cite \textit{H. Zhou} et al., J. Comb. Number Theory 6, No. 3, 219--231 (2014; Zbl 1329.05254)
Ruksasakchai, Watcharintorn; Nakprasit, Kittikorn \((2,t)\)-choosable graphs. (English) Zbl 1313.05130 Ars Comb. 113, 307-319 (2014). MSC: 05C15 05C78 PDF BibTeX XML Cite \textit{W. Ruksasakchai} and \textit{K. Nakprasit}, Ars Comb. 113, 307--319 (2014; Zbl 1313.05130)
Wang, Weifan; Zhang, Ge; Chen, Min Acyclic 6-choosability of planar graphs without adjacent short cycles. (English) Zbl 1299.05137 Sci. China, Math. 57, No. 1, 197-209 (2014). MSC: 05C15 PDF BibTeX XML Cite \textit{W. Wang} et al., Sci. China, Math. 57, No. 1, 197--209 (2014; Zbl 1299.05137) Full Text: DOI
Cranston, Daniel W.; Škrekovski, Riste Sufficient sparseness conditions for \(G^2\) to be \((\Delta + 1)\)-choosable, when \(\Delta \geq 5\). (English) Zbl 1300.05093 Discrete Appl. Math. 162, 167-176 (2014). MSC: 05C15 05C07 05C35 PDF BibTeX XML Cite \textit{D. W. Cranston} and \textit{R. Škrekovski}, Discrete Appl. Math. 162, 167--176 (2014; Zbl 1300.05093) Full Text: DOI
Chen, Min; Raspaud, André On \((3, 1)^\ast\)-choosability of planar graphs without adjacent short cycles. (English) Zbl 1300.05073 Discrete Appl. Math. 162, 159-166 (2014). MSC: 05C10 05C38 05C15 05C85 PDF BibTeX XML Cite \textit{M. Chen} and \textit{A. Raspaud}, Discrete Appl. Math. 162, 159--166 (2014; Zbl 1300.05073) Full Text: DOI
Kosar, Nicholas; Petrickova, Sarka; Reiniger, Benjamin; Yeager, Elyse A note on list-coloring powers of graphs. (English) Zbl 1298.05123 Discrete Math. 332, 10-14 (2014). MSC: 05C15 PDF BibTeX XML Cite \textit{N. Kosar} et al., Discrete Math. 332, 10--14 (2014; Zbl 1298.05123) Full Text: DOI arXiv
Hu, Xiaoxue; Wang, Yiqiao Plane graphs are entirely \((\Delta + 5)\)-choosable. (English) Zbl 1301.05125 Discrete Math. Algorithms Appl. 6, No. 2, Article ID 1450023, 9 p. (2014). Reviewer: Marcin Anholcer (Poznan) MSC: 05C15 05C10 PDF BibTeX XML Cite \textit{X. Hu} and \textit{Y. Wang}, Discrete Math. Algorithms Appl. 6, No. 2, Article ID 1450023, 9 p. (2014; Zbl 1301.05125) Full Text: DOI
Hu, Xiaoxue; Wang, Weifan; Wang, Yiqiao The edge-face choosability of plane graphs with maximum degree at least 9. (English) Zbl 1288.05061 Discrete Math. 327, 1-8 (2014). MSC: 05C10 05C07 05C35 05C15 PDF BibTeX XML Cite \textit{X. Hu} et al., Discrete Math. 327, 1--8 (2014; Zbl 1288.05061) Full Text: DOI
Carraher, James; Loeb, Sarah; Mahoney, Thomas; Puleo, Gregory J.; Tsai, Mu-Tsun; West, Douglas B. Three topics in online list coloring. (English) Zbl 1287.05041 J. Comb. 5, No. 1, 115-130 (2014). MSC: 05C15 PDF BibTeX XML Cite \textit{J. Carraher} et al., J. Comb. 5, No. 1, 115--130 (2014; Zbl 1287.05041) Full Text: DOI
Fu, Jingcheng; Wang, Guanghui; Wu, Jianliang; Xu, Jin A note on edge weight choosability of graphs. (English) Zbl 1286.05047 Discrete Math. Algorithms Appl. 6, No. 1, Article ID 1450010, 4 p. (2014). MSC: 05C15 PDF BibTeX XML Cite \textit{J. Fu} et al., Discrete Math. Algorithms Appl. 6, No. 1, Article ID 1450010, 4 p. (2014; Zbl 1286.05047) Full Text: DOI
Hou, Jian Feng; Liu, Gui Zhen Every toroidal graph is acyclically 8-choosable. (English) Zbl 1283.05100 Acta Math. Sin., Engl. Ser. 30, No. 2, 343-352 (2014). MSC: 05C15 05C38 PDF BibTeX XML Cite \textit{J. F. Hou} and \textit{G. Z. Liu}, Acta Math. Sin., Engl. Ser. 30, No. 2, 343--352 (2014; Zbl 1283.05100) Full Text: DOI
Aubry, Yves; Godin, Jean-Christophe; Togni, Olivier Every triangle-free induced subgraph of the triangular lattice is \((5m,2m)\)-choosable. (English) Zbl 1283.05182 Discrete Appl. Math. 166, 51-58 (2014). MSC: 05C60 05C22 94A12 PDF BibTeX XML Cite \textit{Y. Aubry} et al., Discrete Appl. Math. 166, 51--58 (2014; Zbl 1283.05182) Full Text: DOI
Ruksasakchai, Watcharintorn; Nakprasit, Kittikorn On a conjecture about \((k,t)\)-choosability. (English) Zbl 1313.05129 Ars Comb. 111, 375-387 (2013). MSC: 05C15 PDF BibTeX XML Cite \textit{W. Ruksasakchai} and \textit{K. Nakprasit}, Ars Comb. 111, 375--387 (2013; Zbl 1313.05129)
Zhu, Xiaoying The 3-choosability of plane graphs without 8-, 9- and 10-cycles. (Chinese. English summary) Zbl 1313.05146 Pure Appl. Math. 29, No. 6, 609-614 (2013). MSC: 05C15 05C10 05C38 PDF BibTeX XML Cite \textit{X. Zhu}, Pure Appl. Math. 29, No. 6, 609--614 (2013; Zbl 1313.05146) Full Text: DOI
Zhang, Haihui Corrigendum to “On 3-choosability of planar graphs with neither adjacent triangles nor 5-, 6- and 9-cycles”. (English) Zbl 1287.05032 Inf. Process. Lett. 113, No. 9, 354-356 (2013). MSC: 05C10 PDF BibTeX XML Cite \textit{H. Zhang}, Inf. Process. Lett. 113, No. 9, 354--356 (2013; Zbl 1287.05032) Full Text: DOI