×

Settling of a vesicle in the limit of quasispherical shapes. (English) Zbl 1241.76129

From the summary: Vesicles are drops of radius of a few tens of micrometres bounded by an impermeable lipid membrane of approximately 4 nm thickness in a viscous fluid. The salient characteristics of such a deformable object are a membrane rigidity governed by flexion due to curvature energy and a two-dimensional membrane fluidity characterized by a local membrane incompressibility. This provides unique properties with strong constraints on the internal volume and membrane area. Yet, when subjected to external stresses, vesicles exhibit a large deformability. The deformation of a settling vesicle in an infinite flow is studied theoretically, assuming a quasispherical shape and expanding all variables of the problem onto spherical harmonics. The contribution of thermal fluctuations is neglected in this analysis. A system of equations describing the temporal evolution of the shape is derived with this formalism. The final shape and the settling velocity are then determined and depend on two dimensionless parameters: the Bond number and the excess area. This simultaneous study leads to three stationary shapes, an egg-like shape already observed in an analogous experimental configuration in the limit of weak flow magnitude, a parachute-like shape and a non-trivial non-axisymmetrical shape. The final shape depends on the initial conditions: prolate or oblate vesicle and orientation compared with gravity. The analytical solution in the small deformation regime is compared with numerical results obtained with a three-dimensional code. A very good agreement between numerical and theoretical results is found.

MSC:

76D07 Stokes and related (Oseen, etc.) flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/S0022-5193(70)80032-7 · doi:10.1016/S0022-5193(70)80032-7
[2] DOI: 10.1017/S0022112081003480 · Zbl 0493.76129 · doi:10.1017/S0022112081003480
[3] DOI: 10.1103/PhysRevLett.64.2094 · doi:10.1103/PhysRevLett.64.2094
[4] DOI: 10.1103/PhysRevE.67.031908 · doi:10.1103/PhysRevE.67.031908
[5] DOI: 10.1051/jphys:019900051010094500 · doi:10.1051/jphys:019900051010094500
[6] DOI: 10.1103/PhysRevA.44.1182 · doi:10.1103/PhysRevA.44.1182
[7] DOI: 10.1103/PhysRevE.83.031921 · doi:10.1103/PhysRevE.83.031921
[8] DOI: 10.1021/la063687v · doi:10.1021/la063687v
[9] DOI: 10.1007/s100510050706 · doi:10.1007/s100510050706
[10] DOI: 10.1039/b703580b · doi:10.1039/b703580b
[11] DOI: 10.1080/00018739700101488 · doi:10.1080/00018739700101488
[12] DOI: 10.1017/S0022112080001449 · Zbl 0456.76038 · doi:10.1017/S0022112080001449
[13] DOI: 10.1103/PhysRevLett.102.118105 · doi:10.1103/PhysRevLett.102.118105
[14] DOI: 10.1017/S0022112005007652 · Zbl 1090.76503 · doi:10.1017/S0022112005007652
[15] DOI: 10.1088/0143-0807/6/4/014 · doi:10.1088/0143-0807/6/4/014
[16] DOI: 10.1103/PhysRevE.76.041905 · doi:10.1103/PhysRevE.76.041905
[17] DOI: 10.1103/PhysRevE.69.061914 · doi:10.1103/PhysRevE.69.061914
[18] DOI: 10.1039/dc9868100303 · doi:10.1039/dc9868100303
[19] DOI: 10.1103/PhysRevLett.103.248103 · doi:10.1103/PhysRevLett.103.248103
[20] DOI: 10.1007/s00397-002-0233-3 · doi:10.1007/s00397-002-0233-3
[21] DOI: 10.1103/PhysRevLett.88.068103 · doi:10.1103/PhysRevLett.88.068103
[22] DOI: 10.1017/S0022112093001582 · doi:10.1017/S0022112093001582
[23] DOI: 10.1140/epje/i2003-10157-8 · doi:10.1140/epje/i2003-10157-8
[24] DOI: 10.1002/bit.10559 · doi:10.1002/bit.10559
[25] DOI: 10.1103/PhysRevE.72.011901 · doi:10.1103/PhysRevE.72.011901
[26] DOI: 10.1103/PhysRevLett.83.880 · doi:10.1103/PhysRevLett.83.880
[27] Morse, Methods of Theoretical Physics (1953) · Zbl 0051.40603
[28] DOI: 10.1103/PhysRevLett.96.028104 · doi:10.1103/PhysRevLett.96.028104
[29] Lipowsky, Structure and Dynamics of Membranes (1995)
[30] DOI: 10.1016/S0076-6879(09)65004-7 · doi:10.1016/S0076-6879(09)65004-7
[31] DOI: 10.1063/1.3054128 · Zbl 1182.76444 · doi:10.1063/1.3054128
[32] DOI: 10.1088/1367-2630/10/4/043044 · doi:10.1088/1367-2630/10/4/043044
[33] DOI: 10.1103/PhysRevLett.99.218101 · doi:10.1103/PhysRevLett.99.218101
[34] DOI: 10.1103/PhysRevLett.77.3685 · doi:10.1103/PhysRevLett.77.3685
[35] DOI: 10.1063/1.864511 · doi:10.1063/1.864511
[36] DOI: 10.1063/1.857796 · doi:10.1063/1.857796
[37] DOI: 10.1063/1.857359 · doi:10.1063/1.857359
[38] Kessler, J. Fluid Mech. 113 pp 207– (2008)
[39] DOI: 10.1209/epl/i1999-00254-x · doi:10.1209/epl/i1999-00254-x
[40] DOI: 10.1017/S0022112082002651 · Zbl 0503.76142 · doi:10.1017/S0022112082002651
[41] DOI: 10.1103/PhysRevE.80.061905 · doi:10.1103/PhysRevE.80.061905
[42] DOI: 10.1103/PhysRevLett.96.036001 · doi:10.1103/PhysRevLett.96.036001
[43] DOI: 10.1103/PhysRevLett.95.258101 · doi:10.1103/PhysRevLett.95.258101
[44] DOI: 10.1016/j.jcis.2004.08.129 · doi:10.1016/j.jcis.2004.08.129
[45] DOI: 10.1088/1367-2630/13/3/035026 · doi:10.1088/1367-2630/13/3/035026
[46] DOI: 10.1140/epje/i2002-10091-3 · doi:10.1140/epje/i2002-10091-3
[47] Helfrich, Z. Naturforsch. C 28 pp 693– (1973)
[48] DOI: 10.1017/S0022112011000115 · Zbl 1241.76133 · doi:10.1017/S0022112011000115
[49] DOI: 10.1103/PhysRevE.81.061904 · doi:10.1103/PhysRevE.81.061904
[50] DOI: 10.1103/PhysRevE.64.011916 · doi:10.1103/PhysRevE.64.011916
[51] DOI: 10.1126/science.175.4023.720 · doi:10.1126/science.175.4023.720
[52] DOI: 10.1016/j.jcp.2010.10.021 · Zbl 1391.76525 · doi:10.1016/j.jcp.2010.10.021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.