zbMATH — the first resource for mathematics

An active strain electromechanical model for cardiac tissue. (English) Zbl 1242.92016
Summary: We propose a finite element approximation of a system of partial differential equations describing the coupling between the propagation of the electrical potential and large deformations of the cardiac tissue. The underlying mathematical model is based on the active strain assumption, in which it is assumed that there is a multiplicative decomposition of the deformation tensor into a passive and active part, the latter carrying the information of the electrical potential propagation and anisotropy of the cardiac tissue into the equations of either incompressible or compressible nonlinear elasticity, governing the mechanical response of the biological material. In addition, by changing from a Eulerian to a Lagrangian configuration, the bidomain or monodomain equations modeling the evolution of the electrical propagation exhibit a nonlinear diffusion term. Piecewise quadratic finite elements are employed to approximate the displacements field, whereas for pressure, electrical potentials and ionic variables are approximated by piecewise linear elements. Various numerical tests performed with a parallel finite element code illustrate that the proposed model can capture some important features of the electromechanical coupling and show that our numerical scheme is efficient and accurate.

92C30 Physiology (general)
92C05 Biophysics
78A70 Biological applications of optics and electromagnetic theory
92C10 Biomechanics
35K57 Reaction-diffusion equations
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35Q92 PDEs in connection with biology, chemistry and other natural sciences
FreeFem++; LifeV
Full Text: DOI
[1] Cherubini, An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects, Progresses in Biophysics and Molecular Biology 97 pp 562– (2008) · doi:10.1016/j.pbiomolbio.2008.02.001
[2] Nash, Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias, Progresses in Biophysics and Molecular Biology 85 pp 501– (2004) · doi:10.1016/j.pbiomolbio.2004.01.016
[3] Pathmanathan, A numerical method for cardiac mechanoelectric simulations, Annals of Biomedical Engineering 37 pp 860– (2009) · doi:10.1007/s10439-009-9663-8
[4] Sainte-Marie, Modeling and estimation of the cardiac electromechanical activity, Computers and Structures 84 pp 1743– (2006) · doi:10.1016/j.compstruc.2006.05.003
[5] Bendahmane, A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology, Numerical Methods for Partial Differential Equations 26 pp 1377– (2010) · Zbl 1206.92004
[6] Colli Franzone, A parallel solver for reaction-diffusion systems in computational electro-cardiology, Mathematical Models and Methods in Applied Sciences 14 pp 883– (2004) · Zbl 1068.92024 · doi:10.1142/S0218202504003489
[7] Gerardo-Giorda, A model-based block-triangular preconditioner for the bidomain system in electrocardiology, Journal of Computational Physics 228 pp 3625– (2009) · Zbl 1187.92053 · doi:10.1016/j.jcp.2009.01.034
[8] Pennacchio, Algebraic multigrid preconditioners for the bidomain reaction-diffusion system, Applied Numerical Mathematics 59 pp 3033– (2009) · Zbl 1171.92017 · doi:10.1016/j.apnum.2009.08.001
[9] Ambrosi, Electromechanical coupling in cardiac dynamics: the active strain approach, SIAM Journal of Applied Mathematics 71 pp 605– (2011) · Zbl 1419.74174 · doi:10.1137/100788379
[10] Nardinocchi, On the active response of soft living tissues, Journal of Elasticity 88 pp 27– (2007) · Zbl 1115.74349 · doi:10.1007/s10659-007-9111-7
[11] Ravens, Mechano-electric feedback and arrhythmias, Progresses in Biophysics and Molecular Biology 82 pp 255– (2003) · doi:10.1016/S0079-6107(03)00026-9
[12] Tung L A bi-domain model for describing ischemic myocardial D-C currents PhD thesis 1978
[13] Rogers, A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE Transactions on Biomedical Engineering 41 pp 743– (1994) · doi:10.1109/10.310090
[14] Luo, A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction, Circulation Research 68 pp 1501– (1991) · doi:10.1161/01.RES.68.6.1501
[15] Bürger, Numerical Mathematics and Advanced Applications pp 199– (2010) · Zbl 1311.94016 · doi:10.1007/978-3-642-11795-4_20
[16] Holzapfel, Constitutive modelling of passive myocardium: a structurally based framework for material characterization, Philosophical Transactions of the Royal Society A 367 pp 3445– (2009) · Zbl 1185.74060 · doi:10.1098/rsta.2009.0091
[17] Simo, Remarks on rate constitutive equations for finite deformations, Computational Methods in Applied Mechanics and Engineering 46 pp 201– (1984) · Zbl 0525.73042 · doi:10.1016/0045-7825(84)90062-8
[18] Taber, Modeling heart development, Journal of Elasticity 61 pp 165– (2000) · Zbl 0987.74049 · doi:10.1023/A:1011082712497
[19] Nash, Computational mechanics of the heart, Journal of Elasticity 61 pp 113– (2000) · Zbl 1071.74659 · doi:10.1023/A:1011084330767
[20] Ciarlet, Mathematical Elasticity, Vol. 1. Three Dimensional Elasticity (1998)
[21] Kerckhoffs, Homogeneity of cardiac contraction despite physiological asynchrony of depolarization: a model study, Annals of Biomedical Engineering 31 pp 536– (2003) · doi:10.1114/1.1566447
[22] Usyk, Computational model of three-dimensional cardiac electromechanics, Computing and Visualization in Science 4 pp 249– (2002) · Zbl 1001.92005 · doi:10.1007/s00791-002-0081-9
[23] Rossi S Ruiz-Baier R Pavarino LF Quarteroni A
[24] Rice, Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations, Biophysical Journal 95 pp 2368– (2008) · doi:10.1529/biophysj.107.119487
[25] Colli Franzone, Evolution Equations, Semigroups and Functional Analysis pp 49– (2002) · doi:10.1007/978-3-0348-8221-7_4
[26] Veneroni, Reaction-diffusion systems for the macroscopic Bidomain model of the cardiac electric field, Nonlinear Analysis: Real World Applications 10 pp 849– (2009) · Zbl 1167.35403 · doi:10.1016/j.nonrwa.2007.11.008
[27] Krejčí, Solutions to muscle fiber equations and their long time behaviour, Nonlinear Analysis: Real World Applications 7 pp 535– (2006) · Zbl 1105.35306 · doi:10.1016/j.nonrwa.2005.03.021
[28] Andreianov B Bendahmane M Quarteroni A Ruiz-Baier R
[29] Göktepe, Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction problem, Computational Mechanics 45 pp 227– (2010) · Zbl 1183.78031 · doi:10.1007/s00466-009-0434-z
[30] Quarteroni, Numerical models for differential problems 2 (2009) · doi:10.1007/978-88-470-1071-0
[31] Pathmanathan, A comparison of numerical methods used for finite element modelling of soft tissue deformation, Journal of Strain Analysis 44 pp 391– (2009) · doi:10.1243/03093247JSA482
[32] http://www.lifev.org
[33] Hecht, FREEFEM++ (2008)
[34] Vetter, A finite element model of passive mechanics and electrical propagation in the rabbit ventricles, Computational Cardiology 25 pp 705– (1998)
[35] Taber, Mechanics of ventricular torsion, Journal of Biomechanics 29 pp 745– (1996) · doi:10.1016/0021-9290(95)00129-8
[36] Peyrat, A computational framework for the statistical analysis of cardiac diffusion tensors: application to a small database of canine hearts, IEEE Transactions on Medical Imaging 26 pp 1500– (2007) · doi:10.1109/TMI.2007.907286
[37] Gurev, Models of cardiac electromechanics based on individual hearts imaging data, Biomechanics and modeling in mechanobiology 10 pp 295– (2011) · doi:10.1007/s10237-010-0235-5
[38] Moireau, External tissue support and fluid-structure simulation in blood flows, Biomechanics and Modeling in Mechanobiology (2011)
[39] Pathmanathan, Cardiac electromechanics: the effect of contraction model on the mathematical problem and accuracy of the numerical scheme, Quarterly Journal of Mechanics and Applied Mathematics 63 pp 375– (2010) · Zbl 1250.74019 · doi:10.1093/qjmam/hbq014
[40] Trayanova, Whole-heart modeling: applications to cardiac electrophysiology and electromechanics, Circulation Research 108 pp 113– (2011) · doi:10.1161/CIRCRESAHA.110.223610
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.