# zbMATH — the first resource for mathematics

Optimized ruled surfaces with an application to thin-walled concrete shells. (English) Zbl 1400.51021
Cocchiarella, Luigi (ed.), ICGG 2018 – Proceedings of the 18th international conference on geometry and graphics. 40th anniversary – Milan, Italy, August 3–7, 2018. In 2 volumes. Cham: Springer; Milan: Politecnico de Milano (ISBN 978-3-319-95587-2/pbk; 978-3-319-95588-9/ebook). Advances in Intelligent Systems and Computing 809, 338-349 (2019).
Summary: For lightweight structures in the field of architecture and civil engineering, concrete shells with negative Gaussian curvature are frequently used. One class of such surfaces are the skew ruled surfaces. To model such surfaces for the purpose of form-finding, we use the line geometry model of the Study sphere in the space of dual vectors. It allows the mapping of lines of the three-dimensional Euclidean space into points of the four-dimensional model space. The correspondence of minimal ruled surfaces, which are the helicoids, with geodesics on the dual unit sphere can be handled with the dual Rodrigues formula. This paper presents a proof of the formula and extends it to a general form, which avoids exceptions like parallel rulings. This approach also speeds up the interpolation algorithms for form-finding. The line geometry model, as implemented in Rhinoceros3D’s plug-in Grasshopper, was used to design a small thin-walled footbridge of concrete in cooperation with the TU Berlin. The formwork was prepared with a hot-wire foam cutter at the TU Dresden.
For the entire collection see [Zbl 1403.00028].
##### MSC:
 51M30 Line geometries and their generalizations 53A05 Surfaces in Euclidean and related spaces
Full Text:
##### References:
 [1] Sprott, K., Ravani, B.: Kinematic generation of ruled surfaces. Adv. Comput. Math. 17(1-2), 115-133 (2002) · Zbl 0996.65016 [2] Hagemann, M., Klawitter, D., Lordick, D.: Force driven ruled surfaces. J. Geom. Graph. 17(2), 193-204 (2013) · Zbl 1288.53008 [3] Pott, M., Lordick, D.: Dual spherical energy minimizer with applications to smoothing splines. In: 17th International Conference on Geometry and Graphics, Beijing (2016) [4] Odehnal, B.: Hermite interpolation of ruled surfaces and channel surfaces (2017) [5] Osman Letelier, J.P., Goldack, A., Schlaich, M., Lordick, D., Grave, J.: Shape optimization of concrete shells with ruled surface geometry using line geometry. In: International Association for Shells and Spatial Structures: IASS Annual Symposium, Hamburg (2017) [6] Hagemann, M., Klawitter, D.: Discretisation of light-weight concrete elements using a line-geometric model. In: Proceedings of the 9th fib International PhD Symposium in Civil Engineering, pp. 269-274. KIT Scientific Publishing, Karlsruhe (2012) [7] Klawitter, D., Hagemann, M., Odehnal, D.: Curve flows on ruled surfaces. J. Geom. Graph. 17(2), 129-140 (2013) · Zbl 1297.53045 [8] Varano, V., Gabriele, S., Teresi, L., Dryden, I.L., Puddu, P.E., Torromeo, C., Piras, P.: The TPS direct transport: a new method for transporting deformations in the size-and-shape space. Int. J. Comput. Vis. 124(3), 384-408 (2017) · Zbl 1344.92109 [9] Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Heidelberg (2001) · Zbl 1006.51015 [10] Lordick, D.: Intuitive design and meshing of non-developable ruled surfaces. In: Proceedings of the Design Modelling Symposium Berlin, pp. 248-261, University of the Arts Berlin (2009). URL http://lordick.dgfgg.de/docs/DMSB2009-Lordick-150.pdf [11] Lordick, D., Klawitter, D., Hagemann, M.: Liniengeometrie für den Leichtbau. In: Scheerer, S., Curbach, M. (Hrsg.): Leicht Bauen mit Beton—Forschung im Schwerpunktprogramm 1542 Förderphase I, pp. 224-235. TU Dresden, Dresden (2014) [12] Schlaich, J.: Conceptual design of light structures. J. Int. Assoc. Shells Spat. Struct.: IASS 45, 157-168 (2004) [13] Odehnal, B.: Subdivision algorithms for ruled surfaces. J. Geom. Graph. 12(1), 1-18 (2008) · Zbl 1159.65309 [14] Firl, M.: Optimal shape design of shell structures. Dissertation, München (2010). URL http://mediatum.ub.tum.de/doc/981720/512948.pdf [15] Bletzinger, K.-U., Wüchner, R., Daoud, F., Camprubí, N.: Computational methods for form finding and optimization of shells and membranes. Comput. Methods Appl. Mech. Eng. 194(30), 3438-3452 (2005) · Zbl 1092.74032 [16] Ramm, E., Bletzinger, K.-U.: Computational form finding and optimization. In: Adriaenssens, S., Block, P., Veenendaal, D., Williams, C. (Hrsg.): Shell Structures for Architecture. Form Finding and Optimization, pp. 45-55. Taylor, Hoboken (2014) [17] Pottmann, H., Peternell, M., Ravani, B.: Introduction to line geometry with applications. CAD Comput. Aided Des. 31, 3-16 (1999) · Zbl 1054.68750 [18] Kemmler, R.: Große Verschiebungen und Stabilität in der Topologie- und Formoptimierung. Dissertation, Stuttgart (2004). URL https://www.ibb.uni-stuttgart.de/publikationen/fulltext_new/2004/kemmler-2004.pdf [19] Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. ACM Trans. Graph. 23(3), 284 (2004) [20] Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press, Princeton, NJ (2008) · Zbl 1147.65043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.