×

The undecakisicosahedral group and a 3-regular carbon network of genus 26. (English) Zbl 1127.92051

Summary: Three projective special linear groups PSL\((2,p)\), those with \(p = 5\), 7 and 11, can be seen as \(p\)-multiples of tetrahedral, octahedral and icosahedral rotational point groups, respectively. The first two have already found applications in carbon chemistry and physics, as PSL\((2,5) \equiv I\) is the rotation group of the fullerene \(C_{60}\) and dodecahedrane \(C_{20}H_{20}\), and PSL\((2,7)\) is the rotation group of the 56-vertex all-heptagon Klein map, an idealisation of the hypothetical genus-3 “plumber’s nightmare” allotrope of carbon. We present an analysis of PSL\((2,11)\) as the rotation group of a 220-vertex, all 11-gon, 3-regular map, which provides the basis for a more exotic hypothetical \(sp ^{2}\) framework of genus 26. The group structure and character table of PSL\((2,11)\) are developed in chemical notation and a three-dimensional (3D) geometrical realisation of the 220-vertex map is derived in terms of a punctured polyhedron model where each of 12 pentagons of the truncated icosahedron is connected by a tunnel to an interior void and the 20 hexagons are connected tetrahedrally in sets of 4.

MSC:

92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)
05C10 Planar graphs; geometric and topological aspects of graph theory
20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures
20G99 Linear algebraic groups and related topics
57M20 Two-dimensional complexes (manifolds) (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ceulemans A., King R.B., Bovin S.A., Rogers K.M., Troisi A., Fowler P.W. (1999) J. Math. Chem. 26: 101–123 · Zbl 0992.92042 · doi:10.1023/A:1019129827020
[2] Kraposhin V.S., private communication, see also V.S. Kraposhin, A.L. Talis and J.M. Dubois, J. Phys: Condens. Matter 14 (2002) 1–10.
[3] Griess R.L. Jr., Ryba A.J.E. (1999) Bull. Am. Math. Soc. 36: 75–93 · Zbl 0916.22008 · doi:10.1090/S0273-0979-99-00771-5
[4] Kostant B. (1994) Proc. Natl. Acad. Sci. USA 91: 11714–11717 · Zbl 0820.20002 · doi:10.1073/pnas.91.24.11714
[5] Conway J.H., Curtis R.T, Nortin S.P., Parker R.A., Wilson R.A. (1985). Atlas of Finite Groups. Clarendon Press, Oxford
[6] Klein F. (1879) Math. Ann. 14: 428–471 · JFM 11.0297.01 · doi:10.1007/BF01677143
[7] King R.B. (2002) Discrete Math. 244: 203–210 · Zbl 0994.05144 · doi:10.1016/S0012-365X(01)00067-X
[8] Conder M., Dobcsányi P. (2002) J. Comb. Math. Comb. Comput. 40: 41–63
[9] Lijnen E., Ceulemans A. (2004) J. Chem. Inf. Comput. Sci. 44: 1552–1564
[10] Conder M., Dobcsányi P. (2001) J. Comb. Theory B 81: 224–242 · Zbl 1028.05045 · doi:10.1006/jctb.2000.2008
[11] Coxeter H.S.M., Moser W.O.J. (1972). Generators and Relations for Discrete Groups. 3rd edn Springer-Verlag, Berlin · Zbl 0239.20040
[12] Garey M.R., Johnson D.S. (1979). Computers and Intractibility: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., San Francisco, CA · Zbl 0411.68039
[13] Kostant B. (1995) Not. Am. Math. Soc. 42: 959–968
[14] Kostant B. (1995) Sel. Math. New. Ser. 1: 165–195 · Zbl 0830.20073 · doi:10.1007/BF01614076
[15] Coxeter H.S.M. (1973). Regular Polytopes. 3rd edn Dover Publications, New York · Zbl 0258.05119
[16] Fowler P.W., Hansen P., Rogers K.M., Fajtlowicz S. (1998) J. Chem. Soc. Perkin Trans. 2(7): 1531-1533
[17] Fowler P.W., de La Vaissière B., Deza M. (2001) J. Mol. Graph. Model 19: 199–204 · doi:10.1016/S1093-3263(00)00111-X
[18] Fowler P.W., Rogers K.M., Somers K.R., Troisi A. (1999) J. Chem. Soc. Perkin Trans. 2(10): 2023–2027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.