Kumar, Devendra A uniformly convergent scheme for two-parameter problems having layer behaviour. (English) Zbl 07494139 Int. J. Comput. Math. 99, No. 3, 553-574 (2022). MSC: 65L10 65L11 65L20 65L50 65L70 PDF BibTeX XML Cite \textit{D. Kumar}, Int. J. Comput. Math. 99, No. 3, 553--574 (2022; Zbl 07494139) Full Text: DOI OpenURL
Shakti, Deepti; Mohapatra, Jugal; Das, Pratibhamoy; Vigo-Aguiar, Jesus A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction-diffusion problems with arbitrary small diffusion terms. (English) Zbl 07444599 J. Comput. Appl. Math. 404, Article ID 113167, 16 p. (2022). MSC: 65Mxx 35B25 35B50 35B51 35K51 35K57 65L11 76M45 65M06 65M15 65M50 65N50 PDF BibTeX XML Cite \textit{D. Shakti} et al., J. Comput. Appl. Math. 404, Article ID 113167, 16 p. (2022; Zbl 07444599) Full Text: DOI OpenURL
Hill, Roisin; Madden, Niall Generating layer-adapted meshes using mesh partial differential equations. (English) Zbl 07448853 Numer. Math., Theory Methods Appl. 14, No. 3, 559-588 (2021). MSC: 65N30 65N50 35B25 PDF BibTeX XML Cite \textit{R. Hill} and \textit{N. Madden}, Numer. Math., Theory Methods Appl. 14, No. 3, 559--588 (2021; Zbl 07448853) Full Text: DOI OpenURL
Holke, Johannes; Knapp, David; Burstedde, Carsten An optimized, parallel computation of the ghost layer for adaptive hybrid forest meshes. (English) Zbl 07439853 SIAM J. Sci. Comput. 43, No. 6, C359-C385 (2021). MSC: 65M50 68W10 65Y05 65D18 PDF BibTeX XML Cite \textit{J. Holke} et al., SIAM J. Sci. Comput. 43, No. 6, C359--C385 (2021; Zbl 07439853) Full Text: DOI arXiv OpenURL
Gupta, Vikas; Sahoo, Sanjay K.; Dubey, Ritesh K. Robust higher order finite difference scheme for singularly perturbed turning point problem with two outflow boundary layers. (English) Zbl 1476.65148 Comput. Appl. Math. 40, No. 5, Paper No. 179, 23 p. (2021). MSC: 65L11 65L10 65L20 65L50 65L70 PDF BibTeX XML Cite \textit{V. Gupta} et al., Comput. Appl. Math. 40, No. 5, Paper No. 179, 23 p. (2021; Zbl 1476.65148) Full Text: DOI arXiv OpenURL
Zhou, Qin; Cheng, Lizheng Differential evolution algorithms for boundary layer problems on Bakhvalov-Shishkin mesh. (Chinese. English summary) Zbl 1474.65464 Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 1, 245-253 (2021). MSC: 65N50 68T20 PDF BibTeX XML Cite \textit{Q. Zhou} and \textit{L. Cheng}, Acta Math. Sci., Ser. A, Chin. Ed. 41, No. 1, 245--253 (2021; Zbl 1474.65464) OpenURL
Garanzha, Vladimir A.; Kudryavtseva, Lyudmila N.; Belokrys-Fedotov, Aleksei I. Single and multiple springback technique for construction and control of thick prismatic mesh layers. (English) Zbl 1475.65211 Russ. J. Numer. Anal. Math. Model. 36, No. 1, 1-15 (2021). MSC: 65N50 PDF BibTeX XML Cite \textit{V. A. Garanzha} et al., Russ. J. Numer. Anal. Math. Model. 36, No. 1, 1--15 (2021; Zbl 1475.65211) Full Text: DOI OpenURL
Wei, Changkun; Yang, Jiaqing; Zhang, Bo Convergence analysis of the PML method for time-domain electromagnetic scattering problems. (English) Zbl 1467.78016 SIAM J. Numer. Anal. 58, No. 3, 1918-1940 (2020). Reviewer: Vit Dolejsi (Praha) MSC: 78M10 78A45 65M60 65N30 65N50 65M12 44A10 PDF BibTeX XML Cite \textit{C. Wei} et al., SIAM J. Numer. Anal. 58, No. 3, 1918--1940 (2020; Zbl 1467.78016) Full Text: DOI arXiv OpenURL
Araya, Rodolfo; Aguayo, Jorge; Muñoz, Santiago An adaptive stabilized method for advection-diffusion-reaction equation. (English) Zbl 1436.65170 J. Comput. Appl. Math. 376, Article ID 112858, 22 p. (2020). MSC: 65N30 65N12 65N15 65N50 PDF BibTeX XML Cite \textit{R. Araya} et al., J. Comput. Appl. Math. 376, Article ID 112858, 22 p. (2020; Zbl 1436.65170) Full Text: DOI OpenURL
Sangwan, Vivek; Kaur, Brehmit An exponentially fitted numerical technique for singularly perturbed Burgers-Fisher equation on a layer adapted mesh. (English) Zbl 07474843 Int. J. Comput. Math. 96, No. 7, 1502-1513 (2019). MSC: 65M50 65Mxx PDF BibTeX XML Cite \textit{V. Sangwan} and \textit{B. Kaur}, Int. J. Comput. Math. 96, No. 7, 1502--1513 (2019; Zbl 07474843) Full Text: DOI OpenURL
Yang, Lei; Hu, Guanghui An adaptive finite element solver for demagnetization field calculation. (English) Zbl 07408411 Adv. Appl. Math. Mech. 11, No. 5, 1048-1063 (2019). MSC: 65N30 65N06 65N50 78M10 78M20 78A30 35Q60 PDF BibTeX XML Cite \textit{L. Yang} and \textit{G. Hu}, Adv. Appl. Math. Mech. 11, No. 5, 1048--1063 (2019; Zbl 07408411) Full Text: DOI OpenURL
Browne, Oliver M. F.; Haas, Anthony P.; Fasel, Herman F.; Brehm, Christoph An efficient linear wavepacket tracking method for hypersonic boundary-layer stability prediction. (English) Zbl 1451.65138 J. Comput. Phys. 380, 243-268 (2019). MSC: 65M50 76N20 76K05 PDF BibTeX XML Cite \textit{O. M. F. Browne} et al., J. Comput. Phys. 380, 243--268 (2019; Zbl 1451.65138) Full Text: DOI OpenURL
Wu, Yuanqing; Ye, Maoqing A parallel sparse grid construction algorithm based on the shared memory architecture and its application to flash calculations. (English) Zbl 1442.65421 Comput. Math. Appl. 77, No. 8, 2114-2129 (2019). MSC: 65N50 65Y05 68W10 PDF BibTeX XML Cite \textit{Y. Wu} and \textit{M. Ye}, Comput. Math. Appl. 77, No. 8, 2114--2129 (2019; Zbl 1442.65421) Full Text: DOI OpenURL
Pardue, Juliette; Chernikov, Andrey Algorithm 995: An efficient parallel anisotropic Delaunay mesh generator for two-dimensional finite element analysis. (English) Zbl 07193382 ACM Trans. Math. Softw. 45, No. 3, Article No. 33, 30 p. (2019). MSC: 65L50 65Y05 PDF BibTeX XML Cite \textit{J. Pardue} and \textit{A. Chernikov}, ACM Trans. Math. Softw. 45, No. 3, Article No. 33, 30 p. (2019; Zbl 07193382) Full Text: DOI OpenURL
Becher, Simon FEM-analysis on graded meshes for turning point problems exhibiting an interior layer. (English) Zbl 1427.65118 Int. J. Numer. Anal. Model. 16, No. 3, 499-518 (2019). MSC: 65L10 65L50 65L60 65L70 PDF BibTeX XML Cite \textit{S. Becher}, Int. J. Numer. Anal. Model. 16, No. 3, 499--518 (2019; Zbl 1427.65118) Full Text: arXiv Link OpenURL
Duvnjaković, Enes; Okičić, Nermin; Pasic, Vedad Cubic spline as global approximate solution of the semilinear reaction-diffusion problem. (English) Zbl 1425.65079 J. Mod. Methods Numer. Math. 10, No. 1-2, 36-47 (2019). MSC: 65L10 65L11 65L50 PDF BibTeX XML Cite \textit{E. Duvnjaković} et al., J. Mod. Methods Numer. Math. 10, No. 1--2, 36--47 (2019; Zbl 1425.65079) Full Text: DOI OpenURL
Karasuljić, Samir; Zarin, Helena; Duvnjaković, Enes A class of difference schemes uniformly convergent on a modified Bakhvalov mesh. (English) Zbl 1425.65080 J. Mod. Methods Numer. Math. 10, No. 1-2, 16-35 (2019). MSC: 65L10 65L11 65L50 PDF BibTeX XML Cite \textit{S. Karasuljić} et al., J. Mod. Methods Numer. Math. 10, No. 1--2, 16--35 (2019; Zbl 1425.65080) Full Text: DOI arXiv OpenURL
Brdar, Mirjana; Franz, Sebastian; Roos, Hans-Görg Numerical treatment of singularly perturbed fourth-order two-parameter problems. (English) Zbl 1420.65079 ETNA, Electron. Trans. Numer. Anal. 51, 50-62 (2019). MSC: 65L11 65L60 65N30 65N50 PDF BibTeX XML Cite \textit{M. Brdar} et al., ETNA, Electron. Trans. Numer. Anal. 51, 50--62 (2019; Zbl 1420.65079) Full Text: DOI Link OpenURL
Aubry, R.; Karamete, B. K.; Mestreau, E. L.; Jones, C.; Dey, S. Entropy solution at concave corners and ridges, and volume boundary layer tangential adaptivity. (English) Zbl 1416.65322 J. Comput. Phys. 376, 1-19 (2019). MSC: 65M50 76M25 PDF BibTeX XML Cite \textit{R. Aubry} et al., J. Comput. Phys. 376, 1--19 (2019; Zbl 1416.65322) Full Text: DOI OpenURL
Mittal, Ketan; Fischer, Paul Mesh smoothing for the spectral element method. (English) Zbl 1417.65211 J. Sci. Comput. 78, No. 2, 1152-1173 (2019). MSC: 65N35 65N50 65Y05 65K10 65F08 65F35 65F10 PDF BibTeX XML Cite \textit{K. Mittal} and \textit{P. Fischer}, J. Sci. Comput. 78, No. 2, 1152--1173 (2019; Zbl 1417.65211) Full Text: DOI OpenURL
Kumar, Vivek; Srinivasan, Balaji A novel adaptive mesh strategy for singularly perturbed parabolic convection diffusion problems. (English) Zbl 1416.65271 Differ. Equ. Dyn. Syst. 27, No. 1-3, 203-220 (2019). MSC: 65M06 65M15 65M50 35B25 91G60 91G20 35K20 35Q91 PDF BibTeX XML Cite \textit{V. Kumar} and \textit{B. Srinivasan}, Differ. Equ. Dyn. Syst. 27, No. 1--3, 203--220 (2019; Zbl 1416.65271) Full Text: DOI OpenURL
Xiao, Zhoufang; Xu, Gang; Chen, Jianjun; Wu, Qing; Zhou, Shuai; Xie, Fangfang A tailored fast multipole boundary element method for viscous layer mesh generation. (English) Zbl 1432.65176 Eng. Anal. Bound. Elem. 99, 268-280 (2019). MSC: 65N38 65N50 76M15 PDF BibTeX XML Cite \textit{Z. Xiao} et al., Eng. Anal. Bound. Elem. 99, 268--280 (2019; Zbl 1432.65176) Full Text: DOI OpenURL
Karasuljić, Samir; Duvnjaković, Enes; Memić, Elvir Uniformly convergent difference scheme for a semilinear reaction-diffusion problem on a Shishkin mesh. (English) Zbl 1429.65160 Adv. Math., Sci. J. 7, No. 1, 23-38 (2018). MSC: 65L10 65L11 65L50 PDF BibTeX XML Cite \textit{S. Karasuljić} et al., Adv. Math., Sci. J. 7, No. 1, 23--38 (2018; Zbl 1429.65160) Full Text: arXiv Link OpenURL
Das, Pratibhamoy A higher order difference method for singularly perturbed parabolic partial differential equations. (English) Zbl 1427.65156 J. Difference Equ. Appl. 24, No. 3, 452-477 (2018). MSC: 65M06 35B25 35K20 35K51 65M12 65M50 PDF BibTeX XML Cite \textit{P. Das}, J. Difference Equ. Appl. 24, No. 3, 452--477 (2018; Zbl 1427.65156) Full Text: DOI OpenURL
Liu, Xiaowei; Zhang, Jin Uniform supercloseness of Galerkin finite element method for convection-diffusion problems with characteristic layers. (English) Zbl 1409.65095 Comput. Math. Appl. 75, No. 2, 444-458 (2018). MSC: 65N30 65N50 35B25 PDF BibTeX XML Cite \textit{X. Liu} and \textit{J. Zhang}, Comput. Math. Appl. 75, No. 2, 444--458 (2018; Zbl 1409.65095) Full Text: DOI OpenURL
Liu, Xiaowei; Stynes, Martin; Zhang, Jin Supercloseness of edge stabilization on Shishkin rectangular meshes for convection-diffusion problems with exponential layers. (English) Zbl 1477.65229 IMA J. Numer. Anal. 38, No. 4, 2105-2122 (2018). MSC: 65N30 65N12 65N50 PDF BibTeX XML Cite \textit{X. Liu} et al., IMA J. Numer. Anal. 38, No. 4, 2105--2122 (2018; Zbl 1477.65229) Full Text: DOI OpenURL
Radojev, Goran; Linß, Torsten A posteriori maximum-norm error bounds for the biquadratic spline collocation method applied to reaction-diffusion problems. (English) Zbl 1402.65138 Comput. Appl. Math. 37, No. 4, 4730-4742 (2018). MSC: 65N15 65N35 65N50 PDF BibTeX XML Cite \textit{G. Radojev} and \textit{T. Linß}, Comput. Appl. Math. 37, No. 4, 4730--4742 (2018; Zbl 1402.65138) Full Text: DOI OpenURL
Yuan, Dongfang; Cao, Fujun; Ge, Yongbin High order compact difference scheme on adaptive mesh for convection-diffusion problems with boundary layers. (Chinese. English summary) Zbl 1413.65333 J. Northwest Norm. Univ., Nat. Sci. 54, No. 2, 13-20 (2018). MSC: 65M06 65M50 PDF BibTeX XML Cite \textit{D. Yuan} et al., J. Northwest Norm. Univ., Nat. Sci. 54, No. 2, 13--20 (2018; Zbl 1413.65333) Full Text: DOI OpenURL
Chandru, M.; Das, P.; Ramos, H. Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data. (English) Zbl 1403.35024 Math. Methods Appl. Sci. 41, No. 14, 5359-5387 (2018). MSC: 35B25 35K20 35K51 65M06 65M50 65N12 65N50 35R05 PDF BibTeX XML Cite \textit{M. Chandru} et al., Math. Methods Appl. Sci. 41, No. 14, 5359--5387 (2018; Zbl 1403.35024) Full Text: DOI OpenURL
Gimperlein, Heiko; Meyer, Fabian; Özdemir, Ceyhun; Stark, David; Stephan, Ernst P. Boundary elements with mesh refinements for the wave equation. (English) Zbl 1407.65172 Numer. Math. 139, No. 4, 867-912 (2018). Reviewer: Rolf Dieter Grigorieff (Berlin) MSC: 65M38 65M15 35L20 76Q05 65M50 35C20 PDF BibTeX XML Cite \textit{H. Gimperlein} et al., Numer. Math. 139, No. 4, 867--912 (2018; Zbl 1407.65172) Full Text: DOI arXiv OpenURL
Franz, Sebastian; Xenophontos, Christos A short note on the connection between layer-adapted exponentially graded and S-type meshes. (English) Zbl 1448.65228 Comput. Methods Appl. Math. 18, No. 2, 199-202 (2018). MSC: 65N30 65N12 65N50 35B25 PDF BibTeX XML Cite \textit{S. Franz} and \textit{C. Xenophontos}, Comput. Methods Appl. Math. 18, No. 2, 199--202 (2018; Zbl 1448.65228) Full Text: DOI arXiv OpenURL
Bansal, Komal; Sharma, Kapil K. Parameter-robust numerical scheme for time-dependent singularly perturbed reaction-diffusion problem with large delay. (English) Zbl 1448.65090 Numer. Funct. Anal. Optim. 39, No. 2, 127-154 (2018). MSC: 65M06 65M50 65M12 35K20 35K67 35B25 PDF BibTeX XML Cite \textit{K. Bansal} and \textit{K. K. Sharma}, Numer. Funct. Anal. Optim. 39, No. 2, 127--154 (2018; Zbl 1448.65090) Full Text: DOI OpenURL
Mohapatra, J.; Mahalik, M. K. An initial value method for solving singularly perturbed boundary value problems using adaptive grids. (English) Zbl 1444.65040 Comput. Math. Model. 29, No. 1, 48-58 (2018). MSC: 65L10 65L50 34E20 PDF BibTeX XML Cite \textit{J. Mohapatra} and \textit{M. K. Mahalik}, Comput. Math. Model. 29, No. 1, 48--58 (2018; Zbl 1444.65040) Full Text: DOI OpenURL
Becher, Simon Analysis of Galerkin and streamline-diffusion FEMs on piecewise equidistant meshes for turning point problems exhibiting an interior layer. (English) Zbl 1377.65094 Appl. Numer. Math. 123, 121-136 (2018). MSC: 65L10 65L11 34B05 34E15 65L50 65L70 PDF BibTeX XML Cite \textit{S. Becher}, Appl. Numer. Math. 123, 121--136 (2018; Zbl 1377.65094) Full Text: DOI arXiv OpenURL
Zhang, Jin; Liu, Xiaowei Supercloseness of the continuous interior penalty method for singularly perturbed problems in 1D: vertex-cell interpolation. (English) Zbl 1377.65097 Appl. Numer. Math. 123, 88-98 (2018). MSC: 65L10 65L11 34B05 34E15 65L50 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{X. Liu}, Appl. Numer. Math. 123, 88--98 (2018; Zbl 1377.65097) Full Text: DOI OpenURL
Jiang, Xue; Li, Peijun An adaptive finite element PML method for the acoustic-elastic interaction in three dimensions. (English) Zbl 07414391 Commun. Comput. Phys. 22, No. 5, 1486-1507 (2017). MSC: 65N30 65N50 76Q05 74J20 74B10 35J05 35Q74 PDF BibTeX XML Cite \textit{X. Jiang} and \textit{P. Li}, Commun. Comput. Phys. 22, No. 5, 1486--1507 (2017; Zbl 07414391) Full Text: DOI arXiv OpenURL
Zhang, Jin; Stynes, Martin Supercloseness of continuous interior penalty method for convection-diffusion problems with characteristic layers. (English) Zbl 1439.65204 Comput. Methods Appl. Mech. Eng. 319, 549-566 (2017). MSC: 65N30 65N50 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{M. Stynes}, Comput. Methods Appl. Mech. Eng. 319, 549--566 (2017; Zbl 1439.65204) Full Text: DOI OpenURL
Liu, Xiaowei; Zhang, Jin Galerkin finite element methods for convection-diffusion problems with exponential layers on Shishkin triangular meshes and hybrid meshes. (English) Zbl 1411.65153 Appl. Math. Comput. 307, 244-256 (2017). MSC: 65N30 65N12 65N50 PDF BibTeX XML Cite \textit{X. Liu} and \textit{J. Zhang}, Appl. Math. Comput. 307, 244--256 (2017; Zbl 1411.65153) Full Text: DOI OpenURL
Sadat, S.; Mokaddem, A.; Doumi, B.; Benrekaa, N.; Boutaous, A.; Beldjoudi, N. A study of the effect of finite element meshing in the modeling of elastoplastic degradation of composite laminates. (English) Zbl 1404.74170 Int. J. Comput. Methods 14, No. 1, Article ID 1730001, 19 p. (2017). MSC: 74S05 65N50 65N30 74C05 PDF BibTeX XML Cite \textit{S. Sadat} et al., Int. J. Comput. Methods 14, No. 1, Article ID 1730001, 19 p. (2017; Zbl 1404.74170) Full Text: DOI OpenURL
Blatov, I. A.; Zadorin, A. I.; Kitaeva, E. V. On the uniform convergence of parabolic spline interpolation on the class of functions with large gradients in the boundary layer. (Russian, English) Zbl 1399.65042 Sib. Zh. Vychisl. Mat. 20, No. 2, 131-144 (2017); translation in Numer. Analysis Appl. 10, No. 2, 108-119 (2017). MSC: 65D07 65D05 65L20 65L50 PDF BibTeX XML Cite \textit{I. A. Blatov} et al., Sib. Zh. Vychisl. Mat. 20, No. 2, 131--144 (2017; Zbl 1399.65042); translation in Numer. Analysis Appl. 10, No. 2, 108--119 (2017) Full Text: DOI OpenURL
Shishkin, G. I. Difference scheme for an initial-boundary value problem for a singularly perturbed transport equation. (English. Russian original) Zbl 1383.65096 Comput. Math. Math. Phys. 57, No. 11, 1789-1795 (2017); translation from Zh. Vychisl. Mat. Mat. Fiz. 57, No. 11, 1824-1830 (2017). MSC: 65M06 35B25 35L04 65M50 65M12 PDF BibTeX XML Cite \textit{G. I. Shishkin}, Comput. Math. Math. Phys. 57, No. 11, 1789--1795 (2017; Zbl 1383.65096); translation from Zh. Vychisl. Mat. Mat. Fiz. 57, No. 11, 1824--1830 (2017) Full Text: DOI OpenURL
Karasuljić, Samir; Duvnjaković, Enes; Pasic, Vedad; Barakovic, Elvis Construction of a global solution for the one dimensional singularly-perturbed boundary value problem. (English) Zbl 1422.65125 J. Mod. Methods Numer. Math. 8, No. 1-2, 52-65 (2017). MSC: 65L10 65L11 65L50 PDF BibTeX XML Cite \textit{S. Karasuljić} et al., J. Mod. Methods Numer. Math. 8, No. 1--2, 52--65 (2017; Zbl 1422.65125) Full Text: DOI arXiv OpenURL
Franz, Sebastian Convergence of local projection stabilisation finite element methods for convection-diffusion problems on layer-adapted meshes. (English) Zbl 1378.65172 BIT 57, No. 3, 771-786 (2017). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 65N12 65N30 65N50 35J25 PDF BibTeX XML Cite \textit{S. Franz}, BIT 57, No. 3, 771--786 (2017; Zbl 1378.65172) Full Text: DOI OpenURL
Bakry, Marc A goal-oriented a posteriori error estimate for the oscillating single layer integral equation. (English) Zbl 1375.65162 Appl. Math. Lett. 69, 133-137 (2017). MSC: 65N38 65N15 65N50 35J05 PDF BibTeX XML Cite \textit{M. Bakry}, Appl. Math. Lett. 69, 133--137 (2017; Zbl 1375.65162) Full Text: DOI OpenURL
Zhang, Jin; Liu, Xiaowei Supercloseness of the SDFEM on Shishkin triangular meshes for problems with exponential layers. (English) Zbl 1377.65153 Adv. Comput. Math. 43, No. 4, 759-775 (2017). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N30 65N12 65N50 35J25 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{X. Liu}, Adv. Comput. Math. 43, No. 4, 759--775 (2017; Zbl 1377.65153) Full Text: DOI arXiv OpenURL
Khakimzyanov, Gayaz; Dutykh, Denys On supraconvergence phenomenon for second order centered finite differences on non-uniform grids. (English) Zbl 1370.65038 J. Comput. Appl. Math. 326, 1-14 (2017). MSC: 65L12 65L10 34B15 65L50 65L20 PDF BibTeX XML Cite \textit{G. Khakimzyanov} and \textit{D. Dutykh}, J. Comput. Appl. Math. 326, 1--14 (2017; Zbl 1370.65038) Full Text: DOI arXiv OpenURL
Gowrisankar, S.; Natesan, Srinivasan \(\varepsilon\)-uniformly convergent numerical scheme for singularly perturbed delay parabolic partial differential equations. (English) Zbl 1377.65103 Int. J. Comput. Math. 94, No. 5, 902-921 (2017). Reviewer: Ruxandra Stavre (Bucureşti) MSC: 65M06 65M12 35K20 35R10 35B25 65M50 65M15 PDF BibTeX XML Cite \textit{S. Gowrisankar} and \textit{S. Natesan}, Int. J. Comput. Math. 94, No. 5, 902--921 (2017; Zbl 1377.65103) Full Text: DOI OpenURL
Lukyanenko, Dmitry; Nefedov, Nikolay; Nikulin, Egor; Volkov, Vladimir Use of asymptotics for new dynamic adapted mesh construction for periodic solutions with an interior layer of reaction-diffusion-advection equations. (English) Zbl 1368.65166 Dimov, Ivan (ed.) et al., Numerical analysis and its applications. 6th international conference, NAA 2016, Lozenetz, Bulgaria, June 15–22, 2016. Revised selected papers. Cham: Springer (ISBN 978-3-319-57098-3/pbk; 978-3-319-57099-0/ebook). Lecture Notes in Computer Science 10187, 107-118 (2017). MSC: 65M22 35K57 35B25 65M50 65M15 PDF BibTeX XML Cite \textit{D. Lukyanenko} et al., Lect. Notes Comput. Sci. 10187, 107--118 (2017; Zbl 1368.65166) Full Text: DOI OpenURL
Gracia, J. L.; O’Riordan, E. A singularly perturbed convection-diffusion problem with a moving pulse. (English) Zbl 1366.65084 J. Comput. Appl. Math. 321, 371-388 (2017). MSC: 65M20 65M06 35B25 35K20 65M50 PDF BibTeX XML Cite \textit{J. L. Gracia} and \textit{E. O'Riordan}, J. Comput. Appl. Math. 321, 371--388 (2017; Zbl 1366.65084) Full Text: DOI OpenURL
Loseille, A. Unstructured mesh generation and adaptation. (English) Zbl 1368.65182 Abgrall, Rémi (ed.) et al., Handbook on numerical methods for hyperbolic problems. Applied and modern issues. Amsterdam: Elsevier/North Holland (ISBN 978-0-444-63910-3/hbk; 978-0-444-63911-0/ebook). Handbook of Numerical Analysis 18, 263-302 (2017). MSC: 65M50 65M15 35Q30 35Q31 76H05 76D05 76L05 76N20 76N15 PDF BibTeX XML Cite \textit{A. Loseille}, Handb. Numer. Anal. 18, 263--302 (2017; Zbl 1368.65182) Full Text: DOI Link OpenURL
Zhang, Jin; Liu, Xiaowei Convergence in \(L^{2}\) norm of the SDFEM on a Shishkin triangular mesh for problems with characteristic layers. (English) Zbl 1410.65461 Appl. Math. Comput. 287-288, 171-183 (2016). MSC: 65N30 35B25 35J25 65N12 65N50 PDF BibTeX XML Cite \textit{J. Zhang} and \textit{X. Liu}, Appl. Math. Comput. 287--288, 171--183 (2016; Zbl 1410.65461) Full Text: DOI OpenURL
Ershova, T. Ya. On the convergence of the Dirichlet grid problem with a singularity for a singularly perturbed convection-diffusion equation. (English. Russian original) Zbl 1368.65212 Mosc. Univ. Comput. Math. Cybern. 40, No. 4, 147-154 (2016); translation from Vestn. Mosk. Univ., Ser. XV 2016, No. 4, 3-9 (2016). MSC: 65N12 35J25 35B25 65N50 65N06 PDF BibTeX XML Cite \textit{T. Ya. Ershova}, Mosc. Univ. Comput. Math. Cybern. 40, No. 4, 147--154 (2016; Zbl 1368.65212); translation from Vestn. Mosk. Univ., Ser. XV 2016, No. 4, 3--9 (2016) Full Text: DOI OpenURL
Jiang, Shan; Sun, Meiling; Ling, Zhi Enriched multiscale simulation on Bakhvalov grid for resolving the scale oscillations and boundary layers. (English) Zbl 1361.65089 Int. J. Numer. Methods Appl. 15, No. 3, 183-195 (2016). MSC: 65N30 65N50 35J25 35B25 65N12 PDF BibTeX XML Cite \textit{S. Jiang} et al., Int. J. Numer. Methods Appl. 15, No. 3, 183--195 (2016; Zbl 1361.65089) Full Text: DOI OpenURL
Blatov, I. A.; Kitaeva, E. V. Convergence of a Bakhvalov grid adaptation method for singularly perturbed boundary value problems. (Russian, English) Zbl 1349.65236 Sib. Zh. Vychisl. Mat. 19, No. 1, 47-59 (2016); translation in Numer. Analysis Appl. 9, No. 1, 34-44 (2016). MSC: 65L10 65L11 65L60 65L50 65L20 34B05 PDF BibTeX XML Cite \textit{I. A. Blatov} and \textit{E. V. Kitaeva}, Sib. Zh. Vychisl. Mat. 19, No. 1, 47--59 (2016; Zbl 1349.65236); translation in Numer. Analysis Appl. 9, No. 1, 34--44 (2016) Full Text: DOI OpenURL
Panaseti, Pandelitsa; Zouvani, Antri; Madden, Niall; Xenophontos, Christos A \(C^{1}\)-conforming \(hp\) finite element method for fourth order singularly perturbed boundary value problems. (English) Zbl 1336.65124 Appl. Numer. Math. 104, 81-97 (2016). MSC: 65L60 34B05 34E15 65L11 65L50 65L20 PDF BibTeX XML Cite \textit{P. Panaseti} et al., Appl. Numer. Math. 104, 81--97 (2016; Zbl 1336.65124) Full Text: DOI OpenURL
O’Riordan, Eugene; Quinn, Jason Numerical experiments with a linear convection-diffusion problem containing a time-varying interior layer. (English) Zbl 1427.65178 Knobloch, Petr (ed.), Boundary and interior layers, computational and asymptotic methods – BAIL 2014. Proceedings of the conference, Prague, Czech Republic, September 15–19, 2014. Cham: Springer. Lect. Notes Comput. Sci. Eng. 108, 221-231 (2015). MSC: 65M06 65M50 PDF BibTeX XML Cite \textit{E. O'Riordan} and \textit{J. Quinn}, Lect. Notes Comput. Sci. Eng. 108, 221--231 (2015; Zbl 1427.65178) Full Text: DOI OpenURL
Yun, D. F.; Wen, Z. H.; Hon, Y. C. Adaptive least squares finite integration method for higher-dimensional singular perturbation problems with multiple boundary layers. (English) Zbl 1410.65273 Appl. Math. Comput. 271, 232-250 (2015). MSC: 65L11 65L10 65L50 34E15 PDF BibTeX XML Cite \textit{D. F. Yun} et al., Appl. Math. Comput. 271, 232--250 (2015; Zbl 1410.65273) Full Text: DOI OpenURL
Moxey, D.; Green, M. D.; Sherwin, S. J.; Peiró, J. An isoparametric approach to high-order curvilinear boundary-layer meshing. (English) Zbl 1423.74908 Comput. Methods Appl. Mech. Eng. 283, 636-650 (2015). MSC: 74S05 65N50 76D10 PDF BibTeX XML Cite \textit{D. Moxey} et al., Comput. Methods Appl. Mech. Eng. 283, 636--650 (2015; Zbl 1423.74908) Full Text: DOI OpenURL
Szmelter, Joanna; Zhang, Zhao; Smolarkiewicz, Piotr K. An unstructured-mesh atmospheric model for nonhydrostatic dynamics: towards optimal mesh resolution. (English) Zbl 1349.86043 J. Comput. Phys. 294, 363-381 (2015). MSC: 86A10 86-08 65N50 PDF BibTeX XML Cite \textit{J. Szmelter} et al., J. Comput. Phys. 294, 363--381 (2015; Zbl 1349.86043) Full Text: DOI Link OpenURL
Kumar, Devendra Fitted mesh method for a class of singularly perturbed differential-difference equations. (English) Zbl 1349.65203 Numer. Math., Theory Methods Appl. 8, No. 4, 496-514 (2015). MSC: 65L03 65L11 65L10 65L60 34K28 34K26 65L20 65L50 PDF BibTeX XML Cite \textit{D. Kumar}, Numer. Math., Theory Methods Appl. 8, No. 4, 496--514 (2015; Zbl 1349.65203) Full Text: DOI Link OpenURL
Zadorin, A. I. Lagrange interpolation and Newton-Cotes formulas for functions with boundary layer components on piecewise-uniform grids. (Russian, English) Zbl 1349.65060 Sib. Zh. Vychisl. Mat. 18, No. 3, 289-303 (2015); translation in Numer. Analysis Appl. 8, No. 3, 235-247 (2015). MSC: 65D05 41A05 65D25 65L11 65L50 65D32 PDF BibTeX XML Cite \textit{A. I. Zadorin}, Sib. Zh. Vychisl. Mat. 18, No. 3, 289--303 (2015; Zbl 1349.65060); translation in Numer. Analysis Appl. 8, No. 3, 235--247 (2015) Full Text: DOI OpenURL
Karasuljić, Samir; Duvnjaković, Enes; Zarin, Helena Uniformly convergent difference scheme for a semilinear reaction-diffusion problem. (English) Zbl 1337.65087 Adv. Math., Sci. J. 4, No. 2, 139-159 (2015). MSC: 65L10 65L11 65L50 PDF BibTeX XML Cite \textit{S. Karasuljić} et al., Adv. Math., Sci. J. 4, No. 2, 139--159 (2015; Zbl 1337.65087) OpenURL
O’Riordan, E.; Quinn, J. A linearised singularly perturbed convection-diffusion problem with an interior layer. (English) Zbl 1329.65184 Appl. Numer. Math. 98, 1-17 (2015). MSC: 65M06 65M12 65M50 PDF BibTeX XML Cite \textit{E. O'Riordan} and \textit{J. Quinn}, Appl. Numer. Math. 98, 1--17 (2015; Zbl 1329.65184) Full Text: DOI OpenURL
Paasonen, Viktor I. Compact third-order accuracy schemes on nonuniform adaptive grids. (Russian. English summary) Zbl 1328.65182 Vychisl. Tekhnol. 20, No. 2, 56-64 (2015). MSC: 65M06 35K55 35Q55 65M50 PDF BibTeX XML Cite \textit{V. I. Paasonen}, Vychisl. Tekhnol. 20, No. 2, 56--64 (2015; Zbl 1328.65182) OpenURL
Roos, Hans-Goerg; Teofanov, Ljiljana; Uzelac, Zorica Uniformly convergent difference schemes for a singularly perturbed third order boundary value problem. (English) Zbl 1321.65122 Appl. Numer. Math. 96, 108-117 (2015). MSC: 65L11 65L10 34B15 34E15 65L20 65L50 65L12 PDF BibTeX XML Cite \textit{H.-G. Roos} et al., Appl. Numer. Math. 96, 108--117 (2015; Zbl 1321.65122) Full Text: DOI OpenURL
Quinn, J. A numerical method for a nonlinear singularly perturbed interior layer problem using an approximate layer location. (English) Zbl 1321.65121 J. Comput. Appl. Math. 290, 500-515 (2015). MSC: 65L11 65L10 34E15 34B15 65L12 65L50 65L20 PDF BibTeX XML Cite \textit{J. Quinn}, J. Comput. Appl. Math. 290, 500--515 (2015; Zbl 1321.65121) Full Text: DOI OpenURL
Becher, S.; Roos, H.-G. Richardson extrapolation for a singularly perturbed turning point problem with exponential boundary layers. (English) Zbl 1321.65120 J. Comput. Appl. Math. 290, 334-351 (2015). MSC: 65L11 65L10 65L20 65L70 65L50 65L12 34B15 65L06 PDF BibTeX XML Cite \textit{S. Becher} and \textit{H. G. Roos}, J. Comput. Appl. Math. 290, 334--351 (2015; Zbl 1321.65120) Full Text: DOI OpenURL
Aubry, R.; Dey, S.; Mestreau, E.; Karamete, K.; Gayman, D. An entropy satisfying boundary layer surface mesh generation. (English) Zbl 1327.65231 SIAM J. Sci. Comput. 37, No. 4, A1957-A1974 (2015). MSC: 65N30 65N50 65M50 PDF BibTeX XML Cite \textit{R. Aubry} et al., SIAM J. Sci. Comput. 37, No. 4, A1957--A1974 (2015; Zbl 1327.65231) Full Text: DOI OpenURL
Zadorin, A. I.; Tikhovskaya, S. V.; Zadorin, N. A. A two-grid method for elliptic problem with boundary layers. (English) Zbl 1326.65167 Appl. Numer. Math. 93, 270-278 (2015). MSC: 65N50 65N06 65N12 PDF BibTeX XML Cite \textit{A. I. Zadorin} et al., Appl. Numer. Math. 93, 270--278 (2015; Zbl 1326.65167) Full Text: DOI OpenURL
Zheng, Quan; Li, Xuezheng; Gao, Yue Uniformly convergent hybrid schemes for solutions and derivatives in quasilinear singularly perturbed BVPs. (English) Zbl 1310.65085 Appl. Numer. Math. 91, 46-59 (2015). MSC: 65L10 65L11 34B15 34E15 65L50 65L20 PDF BibTeX XML Cite \textit{Q. Zheng} et al., Appl. Numer. Math. 91, 46--59 (2015; Zbl 1310.65085) Full Text: DOI OpenURL
Hindenlang, Florian J.; Gassner, Gregor J.; Munz, Claus-Dieter Improving the accuracy of discontinuous Galerkin schemes at boundary layers. (English) Zbl 1455.65169 Int. J. Numer. Methods Fluids 75, No. 6, 385-402 (2014). MSC: 65M60 65M50 PDF BibTeX XML Cite \textit{F. J. Hindenlang} et al., Int. J. Numer. Methods Fluids 75, No. 6, 385--402 (2014; Zbl 1455.65169) Full Text: DOI OpenURL
Aubry, R.; Karamete, B. K.; Mestreau, E. L.; Dey, S. A three-dimensional parametric mesher with surface boundary-layer capability. (English) Zbl 1349.76583 J. Comput. Phys. 270, 161-181 (2014). MSC: 76M25 65D17 65M50 PDF BibTeX XML Cite \textit{R. Aubry} et al., J. Comput. Phys. 270, 161--181 (2014; Zbl 1349.76583) Full Text: DOI OpenURL
Shishkina, L.; Shishkin, G. A technique to construct grid methods of higher accuracy order for a singularly perturbed parabolic reaction-diffusion equation. (English) Zbl 1319.65080 Ansari, Ali R. (ed.), Advances in applied mathematics. Selected papers based on the presentations at the 1st Gulf international conference on applied mathematics 2013, GICAM ’13, Kuwait City, Kuwait, in cooperation with the Society for Industrial and Applied Mathematics, SIAM, November 19–21, 2013. Cham: Springer (ISBN 978-3-319-06922-7/hbk; 978-3-319-06923-4/ebook). Springer Proceedings in Mathematics & Statistics 87, 139-151 (2014). MSC: 65M06 35K57 35B25 65M12 65M50 PDF BibTeX XML Cite \textit{L. Shishkina} and \textit{G. Shishkin}, Springer Proc. Math. Stat. 87, 139--151 (2014; Zbl 1319.65080) Full Text: DOI OpenURL
Franz, Sebastian; Roos, H.-G. Superconvergence of a Galerkin FEM for higher-order elements in convection-diffusion problems. (English) Zbl 1324.65137 Numer. Math., Theory Methods Appl. 7, No. 3, 356-373 (2014). MSC: 65N12 65N30 65N50 35J25 PDF BibTeX XML Cite \textit{S. Franz} and \textit{H. G. Roos}, Numer. Math., Theory Methods Appl. 7, No. 3, 356--373 (2014; Zbl 1324.65137) Full Text: DOI arXiv OpenURL
Roos, Hans-Goerg; Teofanov, Ljiljana; Uzelac, Zorica A modified Bakhvalov mesh. (English) Zbl 1312.65122 Appl. Math. Lett. 31, 7-11 (2014). MSC: 65L11 65L10 65L12 65L50 65L60 34B16 PDF BibTeX XML Cite \textit{H.-G. Roos} et al., Appl. Math. Lett. 31, 7--11 (2014; Zbl 1312.65122) Full Text: DOI OpenURL
Vlasak, Miloslav; Roos, Hans-Görg An optimal uniform a priori error estimate for an unsteady singularly perturbed problem. (English) Zbl 1310.65108 Int. J. Numer. Anal. Model. 11, No. 1, 24-33 (2014). MSC: 65M15 65N30 65M50 PDF BibTeX XML Cite \textit{M. Vlasak} and \textit{H.-G. Roos}, Int. J. Numer. Anal. Model. 11, No. 1, 24--33 (2014; Zbl 1310.65108) Full Text: Link OpenURL
Mukherjee, Kaushik; Natesan, Srinivasan Uniform convergence analysis of hybrid numerical scheme for singularly perturbed problems of mixed type. (English) Zbl 1314.65116 Numer. Methods Partial Differ. Equations 30, No. 6, 1931-1960 (2014). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 65M12 35B25 35M10 65M50 65M15 PDF BibTeX XML Cite \textit{K. Mukherjee} and \textit{S. Natesan}, Numer. Methods Partial Differ. Equations 30, No. 6, 1931--1960 (2014; Zbl 1314.65116) Full Text: DOI OpenURL
Lipanov, A. M. Logistic curves and formation of variable steps of spatial variable integration. (Russian. English summary) Zbl 1324.76023 Mat. Model. 26, No. 5, 65-78 (2014). Reviewer: Sergei Georgievich Zhuravlev (Moskva) MSC: 76D10 65M50 65M55 PDF BibTeX XML Cite \textit{A. M. Lipanov}, Mat. Model. 26, No. 5, 65--78 (2014; Zbl 1324.76023) Full Text: MNR OpenURL
Huang, Xuefang; Guo, Rui; Ge, Yongbin A high accuracy compact difference scheme on non-uniform grids for the 1D unsteady convection diffusion equations. (Chinese. English summary) Zbl 1313.65218 Chin. J. Eng. Math. 31, No. 3, 371-380 (2014). MSC: 65M06 65M50 65M12 35K20 PDF BibTeX XML Cite \textit{X. Huang} et al., Chin. J. Eng. Math. 31, No. 3, 371--380 (2014; Zbl 1313.65218) Full Text: DOI OpenURL
Cen, Zhongdi; Xu, Aimin; Le, Anbo A finite difference scheme based on a layer-adaptive mesh for fixed rate mortgages models. (Chinese. English summary) Zbl 1313.91185 J. Syst. Sci. Math. Sci. 34, No. 1, 10-19 (2014). MSC: 91G60 65M06 65M12 65M50 PDF BibTeX XML Cite \textit{Z. Cen} et al., J. Syst. Sci. Math. Sci. 34, No. 1, 10--19 (2014; Zbl 1313.91185) OpenURL
Gowrisankar, S.; Natesan, Srinivasan Uniformly convergent numerical method for singularly perturbed parabolic initial-boundary-value problems with equidistributed grids. (English) Zbl 1299.65211 Int. J. Comput. Math. 91, No. 3, 553-577 (2014). MSC: 65M12 65M06 65M50 35K57 76D10 76M20 PDF BibTeX XML Cite \textit{S. Gowrisankar} and \textit{S. Natesan}, Int. J. Comput. Math. 91, No. 3, 553--577 (2014; Zbl 1299.65211) Full Text: DOI OpenURL
Hong, Youngjoon; Jung, Chang-Yeol; Temam, Roger On the numerical approximations of stiff convection-diffusion equations in a circle. (English) Zbl 1295.65112 Numer. Math. 127, No. 2, 291-313 (2014). Reviewer: Abdallah Bradji (Annaba) MSC: 65N30 35J25 65N50 65N15 PDF BibTeX XML Cite \textit{Y. Hong} et al., Numer. Math. 127, No. 2, 291--313 (2014; Zbl 1295.65112) Full Text: DOI OpenURL
Franz, Sebastian; Roos, Hans-Görg; Wachtel, Andreas A \(C^{0}\) interior penalty method for a singularly-perturbed fourth-order elliptic problem on a layer-adapted mesh. (English) Zbl 1293.65151 Numer. Methods Partial Differ. Equations 30, No. 3, 838-861 (2014). Reviewer: Srinivasan Natesan (Assam) MSC: 65N30 35J40 35B25 65N50 65N12 PDF BibTeX XML Cite \textit{S. Franz} et al., Numer. Methods Partial Differ. Equations 30, No. 3, 838--861 (2014; Zbl 1293.65151) Full Text: DOI OpenURL
Zheng, Quan; Feng, Xiaoli; Li, Xuezheng \(\varepsilon\)-uniform convergence of the midpoint upwind scheme on the Bakhvalov-Shishkin mesh for singularly perturbed problems. (English) Zbl 1295.65082 J. Comput. Anal. Appl. 17, No. 1, 40-47 (2014). Reviewer: Yajuan Sun (Beijing) MSC: 65L11 65L20 34B15 34E15 65L50 PDF BibTeX XML Cite \textit{Q. Zheng} et al., J. Comput. Anal. Appl. 17, No. 1, 40--47 (2014; Zbl 1295.65082) OpenURL
Zhu, Huiqing; Zhang, Zhimin Uniform convergence of the LDG method for a singularly perturbed problem with the exponential boundary layer. (English) Zbl 1282.65159 Math. Comput. 83, No. 286, 635-663 (2014). MSC: 65N30 65N12 65N50 35J25 35B25 PDF BibTeX XML Cite \textit{H. Zhu} and \textit{Z. Zhang}, Math. Comput. 83, No. 286, 635--663 (2014; Zbl 1282.65159) Full Text: DOI OpenURL
Abgrall, Rémi; Krust, Arnaud An adaptive enrichment algorithm for advection-dominated problems. (English) Zbl 1455.76077 Int. J. Numer. Methods Fluids 72, No. 3, 359-374 (2013). MSC: 76M10 65N30 65N12 65N50 76R50 PDF BibTeX XML Cite \textit{R. Abgrall} and \textit{A. Krust}, Int. J. Numer. Methods Fluids 72, No. 3, 359--374 (2013; Zbl 1455.76077) Full Text: DOI Link OpenURL
Das, Pratibhamoy; Natesan, Srinivasan Richardson extrapolation method for singularly perturbed convection-diffusion problems on adaptively generated mesh. (English) Zbl 1356.65185 CMES, Comput. Model. Eng. Sci. 90, No. 6, 463-485 (2013). MSC: 65L11 65N50 PDF BibTeX XML Cite \textit{P. Das} and \textit{S. Natesan}, CMES, Comput. Model. Eng. Sci. 90, No. 6, 463--485 (2013; Zbl 1356.65185) Full Text: DOI OpenURL
Kadalbajoo, Mohan K.; Jha, Anuradha A posteriori error analysis for defect correction method for two parameter singular perturbation problems. (English) Zbl 1300.65057 J. Appl. Math. Comput. 42, No. 1-2, 421-440 (2013). Reviewer: Srinivasan Natesan (Assam) MSC: 65L70 65L12 65L50 65L11 34E15 34B05 65L10 PDF BibTeX XML Cite \textit{M. K. Kadalbajoo} and \textit{A. Jha}, J. Appl. Math. Comput. 42, No. 1--2, 421--440 (2013; Zbl 1300.65057) Full Text: DOI OpenURL
Xue, Wenqiang; Lan, Bin; Ge, Yongbin A high-order compact difference scheme for solving the 1D steady convection diffusion equation on nonuniform grids. (Chinese. English summary) Zbl 1299.65259 J. Northwest Norm. Univ., Nat. Sci. 49, No. 4, 16-24, 33 (2013). MSC: 65N06 65N50 35J25 PDF BibTeX XML Cite \textit{W. Xue} et al., J. Northwest Norm. Univ., Nat. Sci. 49, No. 4, 16--24, 33 (2013; Zbl 1299.65259) OpenURL
Zolotareva, N. D.; Nikolaev, E. S. Adaptive \(p\)-version of the finite element method for solving boundary value problems for ordinary second-order differential equations. (English. Russian original) Zbl 1282.65094 Differ. Equ. 49, No. 7, 835-848 (2013); translation from Differ. Uravn. 49, No. 7, 863-876 (2013). MSC: 65L60 65L10 34B05 65L50 PDF BibTeX XML Cite \textit{N. D. Zolotareva} and \textit{E. S. Nikolaev}, Differ. Equ. 49, No. 7, 835--848 (2013; Zbl 1282.65094); translation from Differ. Uravn. 49, No. 7, 863--876 (2013) Full Text: DOI OpenURL
Hong, Youngjoon; Jung, Chang-Yeol; Laminie, Jacques Singularly perturbed reaction-diffusion equations in a circle with numerical applications. (English) Zbl 1284.65168 Int. J. Comput. Math. 90, No. 11, 2308-2325 (2013). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N30 65D10 65N12 35J25 35B25 65N50 PDF BibTeX XML Cite \textit{Y. Hong} et al., Int. J. Comput. Math. 90, No. 11, 2308--2325 (2013; Zbl 1284.65168) Full Text: DOI OpenURL
Erath, Christoph A posteriori error estimates and adaptive mesh refinement for the coupling of the finite volume method and the boundary element method. (English) Zbl 1276.65070 SIAM J. Numer. Anal. 51, No. 3, 1777-1804 (2013). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N15 65N08 65N38 65N50 35J05 35J25 PDF BibTeX XML Cite \textit{C. Erath}, SIAM J. Numer. Anal. 51, No. 3, 1777--1804 (2013; Zbl 1276.65070) Full Text: DOI OpenURL
Feischl, M.; Karkulik, M.; Melenk, J. M.; Praetorius, D. Quasi-optimal convergence rate for an adaptive boundary element method. (English) Zbl 1273.65186 SIAM J. Numer. Anal. 51, No. 2, 1327-1348 (2013). Reviewer: Calin Ioan Gheorghiu (Cluj-Napoca) MSC: 65N38 65N50 65N12 65N15 35J05 PDF BibTeX XML Cite \textit{M. Feischl} et al., SIAM J. Numer. Anal. 51, No. 2, 1327--1348 (2013; Zbl 1273.65186) Full Text: DOI Link OpenURL
Kumar, D.; Kadalbajoo, M. K. A parameter uniform method for singularly perturbed differential-difference equations with small shifts. (English) Zbl 1270.65038 J. Numer. Math. 21, No. 1, 1-22 (2013). Reviewer: Srinivasan Natesan (Assam) MSC: 65L10 65L03 65L11 65L60 65L20 65L70 34K28 34K26 65L50 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{M. K. Kadalbajoo}, J. Numer. Math. 21, No. 1, 1--22 (2013; Zbl 1270.65038) Full Text: DOI OpenURL
Zhu, Huiqing; Zhang, Zhimin Convergence analysis of the LDG method applied to singularly perturbed problems. (English) Zbl 1267.65157 Numer. Methods Partial Differ. Equations 29, No. 2, 396-421 (2013). Reviewer: Yaşar Sözen (Istanbul) MSC: 65N12 65N30 65N50 35B25 35J25 65N15 PDF BibTeX XML Cite \textit{H. Zhu} and \textit{Z. Zhang}, Numer. Methods Partial Differ. Equations 29, No. 2, 396--421 (2013; Zbl 1267.65157) Full Text: DOI OpenURL
Das, Pratibhamoy; Natesan, Srinivasan Higher-order parameter uniform convergent schemes for Robin type reaction-diffusion problems using adaptively generated grid. (English) Zbl 1359.65123 Int. J. Comput. Methods 9, No. 4, Article ID 1250052, 27 p. (2012). MSC: 65L11 65L50 65L10 PDF BibTeX XML Cite \textit{P. Das} and \textit{S. Natesan}, Int. J. Comput. Methods 9, No. 4, Article ID 1250052, 27 p. (2012; Zbl 1359.65123) Full Text: DOI OpenURL
Kadalbajoo, M. K.; Yadaw, Arjun Singh Parameter-uniform finite element method for two-parameter singularly perturbed parabolic reaction-diffusion problems. (English) Zbl 1359.65202 Int. J. Comput. Methods 9, No. 4, Article ID 1250047, 16 p. (2012). MSC: 65M60 65M50 65M06 PDF BibTeX XML Cite \textit{M. K. Kadalbajoo} and \textit{A. S. Yadaw}, Int. J. Comput. Methods 9, No. 4, Article ID 1250047, 16 p. (2012; Zbl 1359.65202) Full Text: DOI OpenURL
Jiang, Chaowei; Cui, Shuxin; Feng, Xueshang Solving the Euler and Navier-Stokes equations by the AMR-CESE method. (English) Zbl 1291.76244 Comput. Fluids 54, 105-117 (2012). MSC: 76M25 76N15 76L05 PDF BibTeX XML Cite \textit{C. Jiang} et al., Comput. Fluids 54, 105--117 (2012; Zbl 1291.76244) Full Text: DOI OpenURL
Jiang, Shan The effective multiscale finite element method in reaction-diffusion problem to recover boundary layers. (English) Zbl 1291.76201 Int. J. Numer. Methods Appl. 7, No. 2, 121-131 (2012). MSC: 76M10 76D10 65N30 65N50 35K57 PDF BibTeX XML Cite \textit{S. Jiang}, Int. J. Numer. Methods Appl. 7, No. 2, 121--131 (2012; Zbl 1291.76201) Full Text: Link OpenURL
Zarin, Helena; Gordić, Snežana Numerical solving of singularly perturbed boundary value problems with discontinuities. (English) Zbl 1289.65166 Novi Sad J. Math. 42, No. 1, 131-145 (2012). Reviewer: Boško Jovanović (Beograd) MSC: 65L11 65L10 34B15 34E15 65L20 65L60 65L50 PDF BibTeX XML Cite \textit{H. Zarin} and \textit{S. Gordić}, Novi Sad J. Math. 42, No. 1, 131--145 (2012; Zbl 1289.65166) OpenURL