Erfani, Shervan; Babolian, Esmail; Javadi, Shahnam New fractional pseudospectral methods with accurate convergence rates for fractional differential equations. (English) Zbl 07311978 ETNA, Electron. Trans. Numer. Anal. 54, 150-175 (2021). MSC: 65 26A33 41A05 65M06 65M12 65L60 PDF BibTeX XML Cite \textit{S. Erfani} et al., ETNA, Electron. Trans. Numer. Anal. 54, 150--175 (2021; Zbl 07311978) Full Text: DOI Link
Khader, M. M.; Saad, Khaled M.; Hammouch, Zakia; Baleanu, Dumitru A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives. (English) Zbl 07310809 Appl. Numer. Math. 161, 137-146 (2021). MSC: 76M22 76M20 76B15 65M15 26A33 PDF BibTeX XML Cite \textit{M. M. Khader} et al., Appl. Numer. Math. 161, 137--146 (2021; Zbl 07310809) Full Text: DOI
Lü, Shujuan; Xu, Tao; Feng, Zhaosheng A second-order numerical method for space-time variable-order diffusion equation. (English) Zbl 07309616 J. Comput. Appl. Math. 389, Article ID 113358, 17 p. (2021). MSC: 65M06 65M12 26A33 PDF BibTeX XML Cite \textit{S. Lü} et al., J. Comput. Appl. Math. 389, Article ID 113358, 17 p. (2021; Zbl 07309616) Full Text: DOI
Hao, Zhaopeng; Cao, Wanrong; Li, Shengyue Numerical correction of finite difference solution for two-dimensional space-fractional diffusion equations with boundary singularity. (English) Zbl 07307380 Numer. Algorithms 86, No. 3, 1071-1087 (2021). MSC: 65 26A33 65M06 65M12 65M55 65T50 PDF BibTeX XML Cite \textit{Z. Hao} et al., Numer. Algorithms 86, No. 3, 1071--1087 (2021; Zbl 07307380) Full Text: DOI
Xie, Guizhong; Li, Ke; Zhong, Yudong; Li, Hao; Hao, Bing; Du, Wenliao; Sun, Chunya; Wang, Haoqi; Wen, Xiaoyu; Wang, Liangwen A systematic derived sinh based method for singular and nearly singular boundary integrals. (English) Zbl 07305286 Eng. Anal. Bound. Elem. 123, 147-153 (2021). MSC: 65 74 PDF BibTeX XML Cite \textit{G. Xie} et al., Eng. Anal. Bound. Elem. 123, 147--153 (2021; Zbl 07305286) Full Text: DOI
Shiah, Y. C.; Chang, Ray-Yu; Hematiyan, M. R. Three-dimensional analysis of heat conduction in anisotropic composites with thin adhesive/interstitial media by the boundary element method. (English) Zbl 07305277 Eng. Anal. Bound. Elem. 123, 36-47 (2021). MSC: 74 65 PDF BibTeX XML Cite \textit{Y. C. Shiah} et al., Eng. Anal. Bound. Elem. 123, 36--47 (2021; Zbl 07305277) Full Text: DOI
Zhao, Lina; Chung, Eric T.; Park, Eun-Jae; Zhou, Guanyu Staggered DG method for coupling of the Stokes and Darcy-Forchheimer problems. (English) Zbl 07302945 SIAM J. Numer. Anal. 59, No. 1, 1-31 (2021). MSC: 65N30 65M12 76D07 76S05 35A23 35Q35 PDF BibTeX XML Cite \textit{L. Zhao} et al., SIAM J. Numer. Anal. 59, No. 1, 1--31 (2021; Zbl 07302945) Full Text: DOI
Wang, Hui; Zhang, Lingling Uniqueness methods for the higher-order coupled fractional differential systems with multi-point boundary conditions. (English) Zbl 07300226 Bull. Sci. Math. 166, Article ID 102935, 31 p. (2021). Reviewer: Syed Abbas (Mandi) MSC: 34 26A33 34A34 34B10 47N20 PDF BibTeX XML Cite \textit{H. Wang} and \textit{L. Zhang}, Bull. Sci. Math. 166, Article ID 102935, 31 p. (2021; Zbl 07300226) Full Text: DOI
Hairer, Martin; Pardoux, Étienne Fluctuations around a homogenised semilinear random PDE. (English) Zbl 07298824 Arch. Ration. Mech. Anal. 239, No. 1, 151-217 (2021). MSC: 35R60 35B27 35K20 35K58 60H05 PDF BibTeX XML Cite \textit{M. Hairer} and \textit{É. Pardoux}, Arch. Ration. Mech. Anal. 239, No. 1, 151--217 (2021; Zbl 07298824) Full Text: DOI
Cen, Dakang; Wang, Zhibo; Mo, Yan Second order difference schemes for time-fractional KdV-Burgers’ equation with initial singularity. (English) Zbl 1453.65210 Appl. Math. Lett. 112, Article ID 106829, 7 p. (2021). MSC: 65M06 65N06 65M12 35R11 26A33 35Q53 PDF BibTeX XML Cite \textit{D. Cen} et al., Appl. Math. Lett. 112, Article ID 106829, 7 p. (2021; Zbl 1453.65210) Full Text: DOI
Khosravian-Arab, Hassan; Eslahchi, M. R. Müntz pseudo-spectral method: theory and numerical experiments. (English) Zbl 1453.65358 Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105510, 29 p. (2021). MSC: 65M70 26A33 33C45 58C40 65M15 35R11 34A08 PDF BibTeX XML Cite \textit{H. Khosravian-Arab} and \textit{M. R. Eslahchi}, Commun. Nonlinear Sci. Numer. Simul. 93, Article ID 105510, 29 p. (2021; Zbl 1453.65358) Full Text: DOI
Kopteva, Natalia Error analysis of an \(L2\)-type method on graded meshes for a fractional-order parabolic problem. (English) Zbl 1452.65237 Math. Comput. 90, No. 327, 19-40 (2021). MSC: 65M60 65M22 65M15 35R11 26A33 PDF BibTeX XML Cite \textit{N. Kopteva}, Math. Comput. 90, No. 327, 19--40 (2021; Zbl 1452.65237) Full Text: DOI
Zhang, Tie; Sheng, Ying The \(H^1\)-error analysis of the finite element method for solving the fractional diffusion equation. (English) Zbl 1452.65263 J. Math. Anal. Appl. 493, No. 2, Article ID 124540, 22 p. (2021). MSC: 65M60 65M06 65N30 65M12 65M15 35R11 26A33 PDF BibTeX XML Cite \textit{T. Zhang} and \textit{Y. Sheng}, J. Math. Anal. Appl. 493, No. 2, Article ID 124540, 22 p. (2021; Zbl 1452.65263) Full Text: DOI
Wei, Yabing; Lü, Shujuan; Chen, Hu; Zhao, Yanmin; Wang, Fenling Convergence analysis of the anisotropic FEM for 2D time fractional variable coefficient diffusion equations on graded meshes. (English) Zbl 1452.65254 Appl. Math. Lett. 111, Article ID 106604, 8 p. (2021). MSC: 65M60 65M22 65N30 65M12 65M15 35R11 26A33 PDF BibTeX XML Cite \textit{Y. Wei} et al., Appl. Math. Lett. 111, Article ID 106604, 8 p. (2021; Zbl 1452.65254) Full Text: DOI
Wei, Leilei; Yang, Yanfang Optimal order finite difference/local discontinuous Galerkin method for variable-order time-fractional diffusion equation. (English) Zbl 1452.65253 J. Comput. Appl. Math. 383, Article ID 113129, 10 p. (2021). MSC: 65M60 65M06 65N30 65M15 65M12 35R11 26A33 PDF BibTeX XML Cite \textit{L. Wei} and \textit{Y. Yang}, J. Comput. Appl. Math. 383, Article ID 113129, 10 p. (2021; Zbl 1452.65253) Full Text: DOI
Manimaran, J.; Shangerganesh, L.; Debbouche, Amar Finite element error analysis of a time-fractional nonlocal diffusion equation with the Dirichlet energy. (English) Zbl 1446.65116 J. Comput. Appl. Math. 382, Article ID 113066, 10 p. (2021). MSC: 65M60 65N30 65M06 65M12 65M15 35R11 26A33 35B45 74H10 PDF BibTeX XML Cite \textit{J. Manimaran} et al., J. Comput. Appl. Math. 382, Article ID 113066, 10 p. (2021; Zbl 1446.65116) Full Text: DOI
Gracia, José Luis; Stynes, Martin A finite difference method for an initial-boundary value problem with a Riemann-Liouville-Caputo spatial fractional derivative. (English) Zbl 1448.65101 J. Comput. Appl. Math. 381, Article ID 113020, 13 p. (2021). MSC: 65M06 35R11 26A33 PDF BibTeX XML Cite \textit{J. L. Gracia} and \textit{M. Stynes}, J. Comput. Appl. Math. 381, Article ID 113020, 13 p. (2021; Zbl 1448.65101) Full Text: DOI
Zunnunov, R. T.; Khaĭdarov, I. U. A boundary value problem with a displacement for the generalized equation of trikomi with a spectral parameter in an unbounded domain. (Russian. English summary) Zbl 07314741 Vestn. KRAUNTS, Fiz.-Mat. Nauki 2020, No. 3(32), 55-64 (2020). MSC: 35M12 PDF BibTeX XML Cite \textit{R. T. Zunnunov} and \textit{I. U. Khaĭdarov}, Vestn. KRAUNTS, Fiz.-Mat. Nauki 2020, No. 3(32), 55--64 (2020; Zbl 07314741) Full Text: DOI MNR
Vivek, D.; Baghani, Omid; Kanagarajan, K. Existence results for hybrid fractional differential equations with Hilfer fractional derivative. (English) Zbl 07314449 Casp. J. Math. Sci. 9, No. 2, 294-304 (2020). MSC: 26A33 34A08 34B18 PDF BibTeX XML Cite \textit{D. Vivek} et al., Casp. J. Math. Sci. 9, No. 2, 294--304 (2020; Zbl 07314449) Full Text: DOI
Savchuk, Artëm M.; Shkalikov, Andreĭ A. Asymptotic analysis of solutions of ordinary differential equations with distribution coefficients. (English. Russian original) Zbl 07308582 Sb. Math. 211, No. 11, 1623-1659 (2020); translation from Mat. Sb. 211, No. 11, 129-166 (2020). MSC: 34A05 34E05 34B09 PDF BibTeX XML Cite \textit{A. M. Savchuk} and \textit{A. A. Shkalikov}, Sb. Math. 211, No. 11, 1623--1659 (2020; Zbl 07308582); translation from Mat. Sb. 211, No. 11, 129--166 (2020) Full Text: DOI
Cernea, Aurelian On controllability for a fractional differential inclusion of Caputo-Fabrizio type. (English) Zbl 07307038 Ann. Acad. Rom. Sci., Math. Appl. 12, No. 1-2, 51-61 (2020). MSC: 34A60 26A33 26A42 34B15 PDF BibTeX XML Cite \textit{A. Cernea}, Ann. Acad. Rom. Sci., Math. Appl. 12, No. 1--2, 51--61 (2020; Zbl 07307038) Full Text: Link
Cattaneo, Alberto S.; Moshayedi, Nima Introduction to the BV-BFV formalism. (English) Zbl 1453.81056 Rev. Math. Phys. 32, No. 9, Article ID 2030006, 67 p. (2020). MSC: 81T70 81T20 53D55 58A50 81Q30 PDF BibTeX XML Cite \textit{A. S. Cattaneo} and \textit{N. Moshayedi}, Rev. Math. Phys. 32, No. 9, Article ID 2030006, 67 p. (2020; Zbl 1453.81056) Full Text: DOI
Du, Ning; Guo, Xu; Wang, Hong Fast upwind and Eulerian-Lagrangian control volume schemes for time-dependent directional space-fractional advection-dispersion equations. (English) Zbl 1453.65247 J. Comput. Phys. 405, Article ID 109127, 15 p. (2020). MSC: 65M08 35R09 26A33 76S05 PDF BibTeX XML Cite \textit{N. Du} et al., J. Comput. Phys. 405, Article ID 109127, 15 p. (2020; Zbl 1453.65247) Full Text: DOI
Chen, Minghua; Ekström, Sven-Erik; Serra-Capizzano, Stefano A multigrid method for nonlocal problems: non-diagonally dominant or Toeplitz-plus-tridiagonal systems. (English) Zbl 07301499 SIAM J. Matrix Anal. Appl. 41, No. 4, 1546-1570 (2020). MSC: 65 26A33 65M55 65T50 PDF BibTeX XML Cite \textit{M. Chen} et al., SIAM J. Matrix Anal. Appl. 41, No. 4, 1546--1570 (2020; Zbl 07301499) Full Text: DOI
Li, Changpin; Li, Zhiqiang; Wang, Zhen Mathematical analysis and the local discontinuous Galerkin method for Caputo-Hadamard fractional partial differential equation. (English) Zbl 07299266 J. Sci. Comput. 85, No. 2, Paper No. 41, 26 p. (2020). MSC: 65 26A33 35B65 65M12 PDF BibTeX XML Cite \textit{C. Li} et al., J. Sci. Comput. 85, No. 2, Paper No. 41, 26 p. (2020; Zbl 07299266) Full Text: DOI
Djeridi, Bochra; Ghanem, Radouen; Sissaoui, Hocine Spectral element methods a priori and a posteriori error estimates for penalized unilateral obstacle problem. (English) Zbl 07299083 J. Sci. Comput. 85, No. 3, Paper No. 54, 34 p. (2020). MSC: 65M60 65M70 65M06 65M15 35A23 35R35 49J20 PDF BibTeX XML Cite \textit{B. Djeridi} et al., J. Sci. Comput. 85, No. 3, Paper No. 54, 34 p. (2020; Zbl 07299083) Full Text: DOI
Gao, Guanghua; Yang, Qian Fast evaluation of linear combinations of Caputo fractional derivatives and its applications to multi-term time-fractional sub-diffusion equations. (English) Zbl 07296126 Numer. Math., Theory Methods Appl. 13, No. 2, 433-451 (2020). MSC: 26A33 65M06 65M12 65M15 PDF BibTeX XML Cite \textit{G. Gao} and \textit{Q. Yang}, Numer. Math., Theory Methods Appl. 13, No. 2, 433--451 (2020; Zbl 07296126) Full Text: DOI
Yang, He; Zhang, Yong Approximate controllability for a class of fractional evolution equations with nonlocal integral boundary conditions. (English) Zbl 07295580 J. Northwest Norm. Univ., Nat. Sci. 56, No. 4, 1-7 (2020). MSC: 93B05 37L05 26A33 PDF BibTeX XML Cite \textit{H. Yang} and \textit{Y. Zhang}, J. Northwest Norm. Univ., Nat. Sci. 56, No. 4, 1--7 (2020; Zbl 07295580) Full Text: DOI
Xu, Jiafa Positive solutions for a system of boundary value problems of fractional difference equations involving semipositone nonlinearities. (Chinese. English summary) Zbl 07294842 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 1, 132-145 (2020). MSC: 34B18 39A05 26A33 PDF BibTeX XML Cite \textit{J. Xu}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 1, 132--145 (2020; Zbl 07294842)
Liu, Yuji Solvability of BVPs for impulsive fractional Langevin type equations involving three Riemann-Liouville fractional derivatives. (Chinese. English summary) Zbl 07294841 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 1, 103-131 (2020). MSC: 34B37 26A33 PDF BibTeX XML Cite \textit{Y. Liu}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 1, 103--131 (2020; Zbl 07294841)
Jahanshahi, M.; Aliyev, N.; Jahanshahi, F. Solving two initial-boundary value problems including fractional partial differential equations by spectral and contour integral methods. (English) Zbl 07293030 Azerb. J. Math. 10, No. 2, 31-48 (2020). MSC: 35R11 26A33 PDF BibTeX XML Cite \textit{M. Jahanshahi} et al., Azerb. J. Math. 10, No. 2, 31--48 (2020; Zbl 07293030) Full Text: Link
Komorowski, Tomasz; Bobrowski, Adam A quantitative Hopf-type maximum principle for subsolutions of elliptic PDEs. (English) Zbl 07293004 Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3495-3502 (2020). MSC: 35B50 35A23 35A09 35J25 PDF BibTeX XML Cite \textit{T. Komorowski} and \textit{A. Bobrowski}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 12, 3495--3502 (2020; Zbl 07293004) Full Text: DOI
Mamiyeva, Turkan The third compilation is a mixed discrete additive and derivative equation for discrete multiplicative investigation of the solution of issues. (English) Zbl 07291768 J. Contemp. Appl. Math. 10, No. 1, 38-45 (2020). MSC: 35J25 35B45 42B20 47B38 PDF BibTeX XML Cite \textit{T. Mamiyeva}, J. Contemp. Appl. Math. 10, No. 1, 38--45 (2020; Zbl 07291768) Full Text: Link
Makarov, R. V.; Nasibullin, R. G.; Shaymardanova, G. R. Weighted Hardy type inequalities and parametric Lamb equation. (English) Zbl 07291211 Lobachevskii J. Math. 41, No. 11, 2198-2210 (2020). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 26D10 26D15 PDF BibTeX XML Cite \textit{R. V. Makarov} et al., Lobachevskii J. Math. 41, No. 11, 2198--2210 (2020; Zbl 07291211) Full Text: DOI
Garif’yanov, F. N.; Strezhneva, E. V. A summary equation for functions holomorphic outside two quadrangles, with application. (English) Zbl 07291206 Lobachevskii J. Math. 41, No. 11, 2149-2154 (2020). MSC: 30E25 30E20 30E05 PDF BibTeX XML Cite \textit{F. N. Garif'yanov} and \textit{E. V. Strezhneva}, Lobachevskii J. Math. 41, No. 11, 2149--2154 (2020; Zbl 07291206) Full Text: DOI
Maleknejad, Khosrow; Rashidinia, Jalil; Eftekhari, Tahereh Existence, uniqueness, and numerical solutions for two-dimensional nonlinear fractional Volterra and Fredholm integral equations in a Banach space. (English) Zbl 07291016 Comput. Appl. Math. 39, No. 4, Paper No. 271, 21 p. (2020). MSC: 26A33 33C45 65N35 PDF BibTeX XML Cite \textit{K. Maleknejad} et al., Comput. Appl. Math. 39, No. 4, Paper No. 271, 21 p. (2020; Zbl 07291016) Full Text: DOI
Saratha, S. R.; Sai Sundara Krishnan, G.; Bagyalakshmi, M.; Lim, Chee Peng Solving Black-Scholes equations using fractional generalized homotopy analysis method. (English) Zbl 07291007 Comput. Appl. Math. 39, No. 4, Paper No. 262, 35 p. (2020). MSC: 65H20 35G31 35C10 26A33 34A08 35R11 PDF BibTeX XML Cite \textit{S. R. Saratha} et al., Comput. Appl. Math. 39, No. 4, Paper No. 262, 35 p. (2020; Zbl 07291007) Full Text: DOI
Ahmad, Bashir; Ntouyas, Sotiris K.; Tariboon, Jessada On inclusion problems involving Caputo and Hadamard fractional derivatives. (English) Zbl 07289719 Acta Math. Univ. Comen., New Ser. 89, No. 1, 169-183 (2020). MSC: 26A33 34A60 34B10 PDF BibTeX XML Cite \textit{B. Ahmad} et al., Acta Math. Univ. Comen., New Ser. 89, No. 1, 169--183 (2020; Zbl 07289719)
Krasnoschok, Mykola; Pata, Vittorino; Siryk, Sergii V.; Vasylyeva, Nataliya Equivalent definitions of Caputo derivatives and applications to subdiffusion equations. (English) Zbl 07288898 Dyn. Partial Differ. Equ. 17, No. 4, 383-402 (2020). MSC: 35R11 35B50 26A33 35B30 35K20 65M06 PDF BibTeX XML Cite \textit{M. Krasnoschok} et al., Dyn. Partial Differ. Equ. 17, No. 4, 383--402 (2020; Zbl 07288898) Full Text: DOI
Auscher, Pascal; Egert, Moritz; Nyström, Kaj \(L^2\) well-posedness of boundary value problems for parabolic systems with measurable coefficients. (English) Zbl 07286826 J. Eur. Math. Soc. (JEMS) 22, No. 9, 2943-3058 (2020). MSC: 35K51 42B37 26A33 42B25 47A60 47D06 35R05 PDF BibTeX XML Cite \textit{P. Auscher} et al., J. Eur. Math. Soc. (JEMS) 22, No. 9, 2943--3058 (2020; Zbl 07286826) Full Text: DOI
Fu, Taibai; Zheng, Zhoushun; Duan, Beiping Variational formulation for fractional inhomogeneous boundary value problems. (English) Zbl 07286418 BIT 60, No. 4, 1203-1219 (2020). MSC: 65N30 26A33 34A08 65L60 65L20 65L70 PDF BibTeX XML Cite \textit{T. Fu} et al., BIT 60, No. 4, 1203--1219 (2020; Zbl 07286418) Full Text: DOI
Selmi, Ridha; Zaabi, Mounia Mathematical study to a regularized 3D-Boussinesq system. (English) Zbl 07286086 Mem. Differ. Equ. Math. Phys. 79, 93-105 (2020). MSC: 35Q35 35A01 35A02 35B30 35B40 35B10 35B45 35B65 35D30 35A23 PDF BibTeX XML Cite \textit{R. Selmi} and \textit{M. Zaabi}, Mem. Differ. Equ. Math. Phys. 79, 93--105 (2020; Zbl 07286086) Full Text: Link
Delić, Aleksandra; Jovanović, Boško S.; Živanović, Sandra Finite difference approximation of a generalized time-fractional telegraph equation. (English) Zbl 07284940 Comput. Methods Appl. Math. 20, No. 4, 595-607 (2020). MSC: 65M06 26A33 34A08 65M12 65M15 PDF BibTeX XML Cite \textit{A. Delić} et al., Comput. Methods Appl. Math. 20, No. 4, 595--607 (2020; Zbl 07284940) Full Text: DOI
Garif’yanov, Farkhat Nurgayazovich; Strezhneva, Elena Vasil’evna On moment problem for entire functions generated by doubly periodic group. (Russian. English summary) Zbl 07281899 Ufim. Mat. Zh. 12, No. 2, 21-27 (2020); translation in Ufa Math. J. 12, No. 2, 21-27 (2020). MSC: 30E05 30E20 30E25 PDF BibTeX XML Cite \textit{F. N. Garif'yanov} and \textit{E. V. Strezhneva}, Ufim. Mat. Zh. 12, No. 2, 21--27 (2020; Zbl 07281899); translation in Ufa Math. J. 12, No. 2, 21--27 (2020) Full Text: DOI MNR
Altun, Ishak; Olgun, Murat An existence and uniqueness theorem for a fractional boundary value problem via new fixed point results on quasi metric spaces. (English) Zbl 1448.54025 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105462, 9 p. (2020). MSC: 54H25 47H10 34B18 26A33 PDF BibTeX XML Cite \textit{I. Altun} and \textit{M. Olgun}, Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105462, 9 p. (2020; Zbl 1448.54025) Full Text: DOI
Hu, Dongdong; Cai, Wenjun; Song, Yongzhong; Wang, Yushun A fourth-order dissipation-preserving algorithm with fast implementation for space fractional nonlinear damped wave equations. (English) Zbl 1448.65105 Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105432, 26 p. (2020). MSC: 65M06 65M12 26A33 35L05 35R11 PDF BibTeX XML Cite \textit{D. Hu} et al., Commun. Nonlinear Sci. Numer. Simul. 91, Article ID 105432, 26 p. (2020; Zbl 1448.65105) Full Text: DOI
Kumar, Sachin; Aguilar, José Francisco Gómez; Pandey, Prashant Numerical solutions for the reaction-diffusion, diffusion-wave, and Cattaneo equations using a new operational matrix for the Caputo-Fabrizio derivative. (English) Zbl 07279006 Math. Methods Appl. Sci. 43, No. 15, 8595-8607 (2020). MSC: 65M70 35K57 35R11 26A33 35Q79 PDF BibTeX XML Cite \textit{S. Kumar} et al., Math. Methods Appl. Sci. 43, No. 15, 8595--8607 (2020; Zbl 07279006) Full Text: DOI
Gutlyanskiĭ, V. Ya.; Nesmelova, O. V.; Ryazanov, V. I.; Yefimushkin, A. S. Logarithmic capacity and Riemann and Hilbert problems for generalized analytic functions. (English) Zbl 07277683 Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2020, No. 8, 11-18 (2020). MSC: 30G20 30E20 30E25 35J60 PDF BibTeX XML Cite \textit{V. Ya. Gutlyanskiĭ} et al., Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky 2020, No. 8, 11--18 (2020; Zbl 07277683) Full Text: DOI
Komorowski, Tomasz; Olla, Stefano; Ryzhik, Lenya Fractional diffusion limit for a kinetic equation with an interface. (English) Zbl 1452.35212 Ann. Probab. 48, No. 5, 2290-2322 (2020). MSC: 35Q79 60J76 45A05 35R11 26A33 PDF BibTeX XML Cite \textit{T. Komorowski} et al., Ann. Probab. 48, No. 5, 2290--2322 (2020; Zbl 1452.35212) Full Text: DOI Euclid
Maros, Gábor; Izsák, Ferenc Finite element methods for fractional-order diffusion problems with optimal convergence order. (English) Zbl 1452.65351 Comput. Math. Appl. 80, No. 10, 2105-2114 (2020). MSC: 65N30 65M06 65N25 65F60 65F10 65M15 65N12 35R11 26A33 PDF BibTeX XML Cite \textit{G. Maros} and \textit{F. Izsák}, Comput. Math. Appl. 80, No. 10, 2105--2114 (2020; Zbl 1452.65351) Full Text: DOI
Akil, Mohammad; Chitour, Yacine; Ghader, Mouhammad; Wehbe, Ali Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary. (English) Zbl 1452.35205 Asymptotic Anal. 119, No. 3-4, 221-280 (2020). MSC: 35Q74 35B35 93B05 35R11 26A33 PDF BibTeX XML Cite \textit{M. Akil} et al., Asymptotic Anal. 119, No. 3--4, 221--280 (2020; Zbl 1452.35205) Full Text: DOI
Durán, Ricardo; Gastaldi, Lucia; Lombardi, Ariel Analysis of finite element approximations of Stokes equations with nonsmooth data. (English) Zbl 1452.65334 SIAM J. Numer. Anal. 58, No. 6, 3309-3331 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65N30 65N15 76D07 35B65 35R11 26A33 PDF BibTeX XML Cite \textit{R. Durán} et al., SIAM J. Numer. Anal. 58, No. 6, 3309--3331 (2020; Zbl 1452.65334) Full Text: DOI
Wang, Kai; Zhou, Zhi High-order time stepping schemes for semilinear subdiffusion equations. (English) Zbl 1452.65252 SIAM J. Numer. Anal. 58, No. 6, 3226-3250 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65M60 65M06 65N30 65N15 35R11 26A33 PDF BibTeX XML Cite \textit{K. Wang} and \textit{Z. Zhou}, SIAM J. Numer. Anal. 58, No. 6, 3226--3250 (2020; Zbl 1452.65252) Full Text: DOI
Mittal, A. K. Spectrally accurate approximate solutions and convergence analysis of fractional Burgers’ equation. (English) Zbl 1452.65279 Arab. J. Math. 9, No. 3, 633-644 (2020). MSC: 65M70 65M12 65M15 65H10 41A50 35R11 26A33 PDF BibTeX XML Cite \textit{A. K. Mittal}, Arab. J. Math. 9, No. 3, 633--644 (2020; Zbl 1452.65279) Full Text: DOI
Jafari, H.; Ncube, M. N.; Makhubela, L. Natural Daftardar-Jafari method for solving fractional partial differential equations. (English) Zbl 1452.65295 NonDynSystTheorNonlinear Dyn. Syst. Theory 20, No. 3, 299-306 (2020). MSC: 65M99 35R11 26A33 PDF BibTeX XML Cite \textit{H. Jafari} et al., Nonlinear Dyn. Syst. Theory 20, No. 3, 299--306 (2020; Zbl 1452.65295) Full Text: Link
Ajeel, Mahmood Shareef; Gachpazan, Morteza; Soheili, Ali Reza Solving a system of nonlinear fractional partial differential equations using the sinc-Muntz collocation method. (English) Zbl 1452.65265 NonDynSystTheorNonlinear Dyn. Syst. Theory 20, No. 2, 119-131 (2020). MSC: 65M70 65H10 42C10 35R11 26A33 PDF BibTeX XML Cite \textit{M. S. Ajeel} et al., Nonlinear Dyn. Syst. Theory 20, No. 2, 119--131 (2020; Zbl 1452.65265) Full Text: Link
Zhou, Boya; Chen, Xiaoli; Li, Dongfang Nonuniform Alikhanov linearized Galerkin finite element methods for nonlinear time-fractional parabolic equations. (English) Zbl 1453.65350 J. Sci. Comput. 85, No. 2, Paper No. 39, 19 p. (2020). MSC: 65M60 65N30 65M22 65M12 35R11 26A33 PDF BibTeX XML Cite \textit{B. Zhou} et al., J. Sci. Comput. 85, No. 2, Paper No. 39, 19 p. (2020; Zbl 1453.65350) Full Text: DOI
Castillo, Paul.; Gómez, Sergio Alejandro On the convergence of the local discontinuous Galerkin method applied to a stationary one dimensional fractional diffusion problem. (English) Zbl 1452.65325 J. Sci. Comput. 85, No. 2, Paper No. 32, 21 p. (2020). MSC: 65N30 65M60 65N12 65N15 35R11 26A33 PDF BibTeX XML Cite \textit{Paul. Castillo} and \textit{S. A. Gómez}, J. Sci. Comput. 85, No. 2, Paper No. 32, 21 p. (2020; Zbl 1452.65325) Full Text: DOI
Salem, Ahmed; Alnegga, Mohammad Fractional Langevin equations with multi-point and non-local integral boundary conditions. (English) Zbl 07273109 Cogent Math. Stat. 7, Article ID 1758361, 15 p. (2020). MSC: 26A33 34A08 34A12 PDF BibTeX XML Cite \textit{A. Salem} and \textit{M. Alnegga}, Cogent Math. Stat. 7, Article ID 1758361, 15 p. (2020; Zbl 07273109) Full Text: DOI
Bonito, Andrea; Guignard, Diane; Zhang, Ashley R. Reduced basis approximations of the solutions to spectral fractional diffusion problems. (English) Zbl 1452.65324 J. Numer. Math. 28, No. 3, 147-160 (2020). MSC: 65N30 65D30 65N15 65N12 35S15 35R11 26A33 PDF BibTeX XML Cite \textit{A. Bonito} et al., J. Numer. Math. 28, No. 3, 147--160 (2020; Zbl 1452.65324) Full Text: DOI
Wongcharoen, Athasit; Thatsatian, Arisa; Ntouyas, Sotiris K.; Tariboon, Jessada Nonlinear fractional \(q\)-difference equation with fractional Hadamard and quantum integral nonlocal conditions. (English) Zbl 1451.39005 J. Funct. Spaces 2020, Article ID 9831752, 10 p. (2020). MSC: 39A13 39A27 39A12 47H10 26A33 PDF BibTeX XML Cite \textit{A. Wongcharoen} et al., J. Funct. Spaces 2020, Article ID 9831752, 10 p. (2020; Zbl 1451.39005) Full Text: DOI
D’Elia, Marta; Tian, Xiaochuan; Yu, Yue A physically consistent, flexible, and efficient strategy to convert local boundary conditions into nonlocal volume constraints. (English) Zbl 07271926 SIAM J. Sci. Comput. 42, No. 4, A1935-A1949 (2020). MSC: 45A05 45K05 26A33 35B40 76R50 PDF BibTeX XML Cite \textit{M. D'Elia} et al., SIAM J. Sci. Comput. 42, No. 4, A1935--A1949 (2020; Zbl 07271926) Full Text: DOI
Jleli, Mohamed; Kirane, Mokhtar; Samet, Bessem Solution blow-up for a fractional in time acoustic wave equation. (English) Zbl 1452.35046 Math. Methods Appl. Sci. 43, No. 10, 6566-6575 (2020). MSC: 35B44 35L05 35L20 35R11 26A33 PDF BibTeX XML Cite \textit{M. Jleli} et al., Math. Methods Appl. Sci. 43, No. 10, 6566--6575 (2020; Zbl 1452.35046) Full Text: DOI
Hu, Ye; Cheng, Fang The finite element method for fractional diffusion with spectral fractional Laplacian. (English) Zbl 1452.35240 Math. Methods Appl. Sci. 43, No. 10, 6283-6299 (2020). MSC: 35R11 65M60 26A33 35K91 74S05 PDF BibTeX XML Cite \textit{Y. Hu} and \textit{F. Cheng}, Math. Methods Appl. Sci. 43, No. 10, 6283--6299 (2020; Zbl 1452.35240) Full Text: DOI
Singh, Harendra; Ghassabzadeh, Fahimeh Akhavan; Tohidi, Emran; Cattani, Carlo Legendre spectral method for the fractional Bratu problem. (English) Zbl 1451.65162 Math. Methods Appl. Sci. 43, No. 9, 5941-5952 (2020). MSC: 65M70 65N35 34A08 34B15 35Q82 35R11 26A33 PDF BibTeX XML Cite \textit{H. Singh} et al., Math. Methods Appl. Sci. 43, No. 9, 5941--5952 (2020; Zbl 1451.65162) Full Text: DOI
Guliyev, Vagif; Ekincioglu, Ismail; Ahmadli, Aysel; Omarova, Mehriban Global regularity in Orlicz-Morrey spaces of solutions to parabolic equations with VMO coefficients. (English) Zbl 1451.42020 J. Pseudo-Differ. Oper. Appl. 11, No. 4, 1963-1989 (2020). MSC: 42B20 42B37 35K20 46E30 PDF BibTeX XML Cite \textit{V. Guliyev} et al., J. Pseudo-Differ. Oper. Appl. 11, No. 4, 1963--1989 (2020; Zbl 1451.42020) Full Text: DOI
Wei, Yabing; Zhao, Yanmin; Wang, Fenling; Tang, Yifa; Yang, Jiye Superconvergence analysis of anisotropic FEMs for time fractional variable coefficient diffusion equations. (English) Zbl 1451.65154 Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4411-4429 (2020). MSC: 65M60 65N30 65M06 65M12 65D05 35R11 26A33 PDF BibTeX XML Cite \textit{Y. Wei} et al., Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4411--4429 (2020; Zbl 1451.65154) Full Text: DOI
Arumugam, Gurusamy; Erhardt, André H. Existence of weak solutions to a certain homogeneous parabolic Neumann problem involving variable exponents and cross-diffusion. (English) Zbl 1451.35067 J. Elliptic Parabol. Equ. 6, No. 2, 685-709 (2020). MSC: 35K51 35K58 35D30 35K65 35A23 PDF BibTeX XML Cite \textit{G. Arumugam} and \textit{A. H. Erhardt}, J. Elliptic Parabol. Equ. 6, No. 2, 685--709 (2020; Zbl 1451.35067) Full Text: DOI
Nie, Daxin; Sun, Jing; Deng, Weihua Numerical algorithm for the space-time fractional Fokker-Planck system with two internal states. (English) Zbl 1451.65152 Numer. Math. 146, No. 3, 481-511 (2020). MSC: 65M60 65M22 65M15 35B65 35R11 26A33 35Q84 82C31 PDF BibTeX XML Cite \textit{D. Nie} et al., Numer. Math. 146, No. 3, 481--511 (2020; Zbl 1451.65152) Full Text: DOI
Narváez, A.; Useche, J. The Kriging integration method applied to the boundary element analysis of Poisson problems. (English) Zbl 07268628 Eng. Anal. Bound. Elem. 121, 1-20 (2020). MSC: 65 76 PDF BibTeX XML Cite \textit{A. Narváez} and \textit{J. Useche}, Eng. Anal. Bound. Elem. 121, 1--20 (2020; Zbl 07268628) Full Text: DOI
Gudimenko, A. I. Heat flow in a harmonic chain due to an impulse disturbance. (Russian. English summary) Zbl 07268326 Dal’nevost. Mat. Zh. 20, No. 1, 52-57 (2020). MSC: 34A33 34A30 34A12 34B05 34A05 80A19 34A37 PDF BibTeX XML Cite \textit{A. I. Gudimenko}, Dal'nevost. Mat. Zh. 20, No. 1, 52--57 (2020; Zbl 07268326) Full Text: MNR
Cabada, Alberto; Dimitrov, Nikolay Nontrivial solutions of non-autonomous Dirichlet fractional discrete problems. (English) Zbl 07268215 Fract. Calc. Appl. Anal. 23, No. 4, 980-995 (2020). MSC: 26A33 34B27 65Q10 PDF BibTeX XML Cite \textit{A. Cabada} and \textit{N. Dimitrov}, Fract. Calc. Appl. Anal. 23, No. 4, 980--995 (2020; Zbl 07268215) Full Text: DOI
Ali, Muhammad; Aziz, Sara; Malik, Salman A. Inverse problem for a multi-term fractional differential equation. (English) Zbl 07268203 Fract. Calc. Appl. Anal. 23, No. 3, 799-821 (2020). MSC: 26A33 80A23 65N21 65M32 33E12 42A20 PDF BibTeX XML Cite \textit{M. Ali} et al., Fract. Calc. Appl. Anal. 23, No. 3, 799--821 (2020; Zbl 07268203) Full Text: DOI
Zhuang, Bo; Cui, Baotong; Chen, Juan Boundary control for a class of coupled fractional reaction-diffusion systems. (Chinese. English summary) Zbl 07266525 Control Theory Appl. 37, No. 3, 592-602 (2020). MSC: 93C20 35K57 26A33 PDF BibTeX XML Cite \textit{B. Zhuang} et al., Control Theory Appl. 37, No. 3, 592--602 (2020; Zbl 07266525) Full Text: DOI
Plekhanova, Marina V.; Baybulatova, Guzel D. A class of semilinear degenerate equations with fractional lower order derivatives. (English) Zbl 07265560 Tarasyev, Alexander (ed.) et al., Stability, control and differential games. Proceedings of the international conference on stability, control and differential games (SCDG2019), Yekaterinburg, Russia, September 16–20, 2019. Cham: Springer (ISBN 978-3-030-42830-3/hbk; 978-3-030-42831-0/ebook). Lecture Notes in Control and Information Sciences – Proceedings, 203-212 (2020). MSC: 76A10 35Q35 26A33 35R11 PDF BibTeX XML Cite \textit{M. V. Plekhanova} and \textit{G. D. Baybulatova}, in: Stability, control and differential games. Proceedings of the international conference on stability, control and differential games (SCDG2019), Yekaterinburg, Russia, September 16--20, 2019. Cham: Springer. 203--212 (2020; Zbl 07265560) Full Text: DOI
Beshtokov, M. H.; Khudalov, M. Z. Difference methods of the solution of local and non-local boundary value problems for loaded equation of thermal conductivity of fractional order. (English) Zbl 1452.80019 Tarasyev, Alexander (ed.) et al., Stability, control and differential games. Proceedings of the international conference on stability, control and differential games (SCDG2019), Yekaterinburg, Russia, September 16–20, 2019. Cham: Springer. Lect. Notes Control Inf. Sci. – Proc., 187-201 (2020). MSC: 80M20 35B45 65M06 65M12 65M15 35R11 26A33 35Q79 PDF BibTeX XML Cite \textit{M. H. Beshtokov} and \textit{M. Z. Khudalov}, in: Stability, control and differential games. Proceedings of the international conference on stability, control and differential games (SCDG2019), Yekaterinburg, Russia, September 16--20, 2019. Cham: Springer. 187--201 (2020; Zbl 1452.80019) Full Text: DOI
Roscani, Sabrina D.; Caruso, Nahuel D.; Tarzia, Domingo A. Explicit solutions to fractional Stefan-like problems for Caputo and Riemann-Liouville derivatives. (English) Zbl 1450.35302 Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105361, 16 p. (2020). MSC: 35R35 35R11 26A33 35C05 33E20 80A22 PDF BibTeX XML Cite \textit{S. D. Roscani} et al., Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105361, 16 p. (2020; Zbl 1450.35302) Full Text: DOI
Nguyen Huy Tuan; Tran Bao Ngoc; Baleanu, Dumitru; O’Regan, Donal On well-posedness of the sub-diffusion equation with conformable derivative model. (English) Zbl 1450.35276 Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105332, 25 p. (2020). MSC: 35R11 35K20 35B65 26A33 35Q56 PDF BibTeX XML Cite \textit{Nguyen Huy Tuan} et al., Commun. Nonlinear Sci. Numer. Simul. 89, Article ID 105332, 25 p. (2020; Zbl 1450.35276) Full Text: DOI
Nandal, Sarita; Narain Pandey, Dwijendra Numerical treatment of non-linear fourth-order distributed fractional sub-diffusion equation with time-delay. (English) Zbl 1452.65172 Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105146, 16 p. (2020). MSC: 65M06 65N06 35R11 26A33 35R07 PDF BibTeX XML Cite \textit{S. Nandal} and \textit{D. Narain Pandey}, Commun. Nonlinear Sci. Numer. Simul. 83, Article ID 105146, 16 p. (2020; Zbl 1452.65172) Full Text: DOI
Li, Xuhao; Wong, Patricia J. Y. A gWSGL numerical scheme for generalized fractional sub-diffusion problems. (English) Zbl 1451.65127 Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 104991, 15 p. (2020). MSC: 65M12 65M15 34A08 35R11 26A33 PDF BibTeX XML Cite \textit{X. Li} and \textit{P. J. Y. Wong}, Commun. Nonlinear Sci. Numer. Simul. 82, Article ID 104991, 15 p. (2020; Zbl 1451.65127) Full Text: DOI
Pikulin, S. V. Parametrization of solutions to the Emden-Fowler equation and the Thomas-Fermi model of compressed atoms. (English. Russian original) Zbl 07264206 Comput. Math. Math. Phys. 60, No. 8, 1271-1283 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 8, 1315-1328 (2020). MSC: 34A34 34A12 34B40 34B16 34B08 34A05 34A45 65L10 PDF BibTeX XML Cite \textit{S. V. Pikulin}, Comput. Math. Math. Phys. 60, No. 8, 1271--1283 (2020; Zbl 07264206); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 8, 1315--1328 (2020) Full Text: DOI
Li, Binjie; Luo, Hao; Xie, Xiaoping A space-time finite element method for fractional wave problems. (English) Zbl 1451.65149 Numer. Algorithms 85, No. 3, 1095-1121 (2020). MSC: 65M60 65M12 35R11 26A33 65M22 PDF BibTeX XML Cite \textit{B. Li} et al., Numer. Algorithms 85, No. 3, 1095--1121 (2020; Zbl 1451.65149) Full Text: DOI
Hu, Xindi; Zhu, Shengfeng Isogeometric analysis for time-fractional partial differential equations. (English) Zbl 1450.65123 Numer. Algorithms 85, No. 3, 909-930 (2020). MSC: 65M60 65D07 26A33 74S05 35R11 PDF BibTeX XML Cite \textit{X. Hu} and \textit{S. Zhu}, Numer. Algorithms 85, No. 3, 909--930 (2020; Zbl 1450.65123) Full Text: DOI
Bajars, Janis; Chappell, David J. Modelling uncertainties in phase-space boundary integral models of ray propagation. (English) Zbl 1453.82061 Commun. Nonlinear Sci. Numer. Simul. 80, Article ID 104973, 19 p. (2020). MSC: 82C31 82M31 65M06 60H05 60H30 60H40 78A05 78A48 35B40 PDF BibTeX XML Cite \textit{J. Bajars} and \textit{D. J. Chappell}, Commun. Nonlinear Sci. Numer. Simul. 80, Article ID 104973, 19 p. (2020; Zbl 1453.82061) Full Text: DOI
Vidras, Alekos On holomorphic functions in the upper half-plane representable by Carleman formula. (English) Zbl 07262163 Complex Anal. Oper. Theory 14, No. 7, Paper No. 66, 14 p. (2020). Reviewer: Vladimir S. Pilidi (Rostov-na-Donu) MSC: 30E20 30H10 PDF BibTeX XML Cite \textit{A. Vidras}, Complex Anal. Oper. Theory 14, No. 7, Paper No. 66, 14 p. (2020; Zbl 07262163) Full Text: DOI
Liu, Huan; Cheng, Aijie; Wang, Hong A parareal finite volume method for variable-order time-fractional diffusion equations. (English) Zbl 1452.65191 J. Sci. Comput. 85, No. 1, Paper No. 19, 26 p. (2020). MSC: 65M08 65M12 65M15 65N15 65Y05 35R11 26A33 76S05 35Q35 PDF BibTeX XML Cite \textit{H. Liu} et al., J. Sci. Comput. 85, No. 1, Paper No. 19, 26 p. (2020; Zbl 1452.65191) Full Text: DOI
Guo, Shimin; Mei, Liquan; Li, Can; Zhang, Zhengqiang; Li, Ying Semi-implicit Hermite-Galerkin spectral method for distributed-order fractional-in-space nonlinear reaction-diffusion equations in multidimensional unbounded domains. (English) Zbl 1452.65274 J. Sci. Comput. 85, No. 1, Paper No. 15, 26 p. (2020). MSC: 65M70 65M60 65M06 65D32 33C45 35R11 26A33 PDF BibTeX XML Cite \textit{S. Guo} et al., J. Sci. Comput. 85, No. 1, Paper No. 15, 26 p. (2020; Zbl 1452.65274) Full Text: DOI
Shi, Haipan; Yang, Heju; Li, Zunfeng; Qiao, Yuying Fractional Clifford-Fourier transform and its application. (English) Zbl 1451.30098 Adv. Appl. Clifford Algebr. 30, No. 5, Paper No. 68, 16 p. (2020). MSC: 30G35 30E20 30E25 45E05 PDF BibTeX XML Cite \textit{H. Shi} et al., Adv. Appl. Clifford Algebr. 30, No. 5, Paper No. 68, 16 p. (2020; Zbl 1451.30098) Full Text: DOI
Shi, Haipan; Yang, Heju; Li, Zunfeng; Qiao, Yuying Two-sided Fourier transform in Clifford analysis and its application. (English) Zbl 1451.30097 Adv. Appl. Clifford Algebr. 30, No. 5, Paper No. 67, 22 p. (2020). MSC: 30G35 30E20 30E25 45E05 PDF BibTeX XML Cite \textit{H. Shi} et al., Adv. Appl. Clifford Algebr. 30, No. 5, Paper No. 67, 22 p. (2020; Zbl 1451.30097) Full Text: DOI
Zhang, Haixiang; Yang, Xuehua; Xu, Da An efficient spline collocation method for a nonlinear fourth-order reaction subdiffusion equation. (English) Zbl 1450.65092 J. Sci. Comput. 85, No. 1, Paper No. 7, 17 p. (2020). MSC: 65M06 65N35 65D07 65N12 35K61 35R11 26A33 PDF BibTeX XML Cite \textit{H. Zhang} et al., J. Sci. Comput. 85, No. 1, Paper No. 7, 17 p. (2020; Zbl 1450.65092) Full Text: DOI
Du, Huan; Perré, Patrick; Turner, Ian Modelling fungal growth with fractional transport models. (English) Zbl 1444.65061 Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105157, 19 p. (2020). MSC: 65N08 26A33 65F60 PDF BibTeX XML Cite \textit{H. Du} et al., Commun. Nonlinear Sci. Numer. Simul. 84, Article ID 105157, 19 p. (2020; Zbl 1444.65061) Full Text: DOI
Gençtürk, İlker; Koca, Kerim Neumann boundary value problem for Bitsadze equation in a ring domain. (English) Zbl 1451.30078 J. Anal. 28, No. 3, 799-815 (2020). MSC: 30E20 30E25 PDF BibTeX XML Cite \textit{İ. Gençtürk} and \textit{K. Koca}, J. Anal. 28, No. 3, 799--815 (2020; Zbl 1451.30078) Full Text: DOI
Ren, Jincheng; Liao, Hong-lin; Zhang, Zhimin Superconvergence error estimate of a finite element method on nonuniform time meshes for reaction-subdiffusion equations. (English) Zbl 1452.65247 J. Sci. Comput. 84, No. 2, Paper No. 38, 23 p. (2020). MSC: 65M60 65M15 65N15 65M12 35R11 26A33 PDF BibTeX XML Cite \textit{J. Ren} et al., J. Sci. Comput. 84, No. 2, Paper No. 38, 23 p. (2020; Zbl 1452.65247) Full Text: DOI
Marynets, Kateryna A Sturm-Liouville problem arising in the atmospheric boundary-layer dynamics. (English) Zbl 1453.34028 J. Math. Fluid Mech. 22, No. 3, Paper No. 41, 6 p. (2020). Reviewer: Abdullah Özbekler (Ankara) MSC: 34B05 34A05 76U05 34C20 PDF BibTeX XML Cite \textit{K. Marynets}, J. Math. Fluid Mech. 22, No. 3, Paper No. 41, 6 p. (2020; Zbl 1453.34028) Full Text: DOI
Lychagin, Valentin; Roop, Mikhail Schrödinger equations on elliptic curves: symmetries, solutions and eigenvalue problem. (English) Zbl 07259112 Anal. Math. Phys. 10, No. 3, Paper No. 34, 17 p. (2020). MSC: 34C14 34A05 34B09 PDF BibTeX XML Cite \textit{V. Lychagin} and \textit{M. Roop}, Anal. Math. Phys. 10, No. 3, Paper No. 34, 17 p. (2020; Zbl 07259112) Full Text: DOI
Fečkan, Michal; Guan, Yi; O’Regan, Donal; Wang, JinRong Existence and uniqueness and first order approximation of solutions to atmospheric Ekman flows. (English) Zbl 1453.34027 Monatsh. Math. 193, No. 3, 623-636 (2020). MSC: 34B05 34A45 34E10 34A05 34B27 PDF BibTeX XML Cite \textit{M. Fečkan} et al., Monatsh. Math. 193, No. 3, 623--636 (2020; Zbl 1453.34027) Full Text: DOI
Liang, Yuxiang; Yao, Zhongsheng; Wang, Zhibo Fast high order difference schemes for the time fractional telegraph equation. (English) Zbl 1452.65164 Numer. Methods Partial Differ. Equations 36, No. 1, 154-172 (2020). MSC: 65M06 65M12 35R11 26A33 35Q60 PDF BibTeX XML Cite \textit{Y. Liang} et al., Numer. Methods Partial Differ. Equations 36, No. 1, 154--172 (2020; Zbl 1452.65164) Full Text: DOI
Hendy, Ahmed S.; Pimenov, Vladimir G.; Macías-Díaz, Jorge E. Convergence and stability estimates in difference setting for time-fractional parabolic equations with functional delay. (English) Zbl 1452.65159 Numer. Methods Partial Differ. Equations 36, No. 1, 118-132 (2020). MSC: 65M06 65M15 65M12 35K10 26A33 35R11 35R07 PDF BibTeX XML Cite \textit{A. S. Hendy} et al., Numer. Methods Partial Differ. Equations 36, No. 1, 118--132 (2020; Zbl 1452.65159) Full Text: DOI
Chen, Churong; Bohner, Martin; Jia, Baoguo Existence and uniqueness of solutions for nonlinear Caputo fractional difference equations. (English) Zbl 1450.39002 Turk. J. Math. 44, No. 3, 857-869 (2020). MSC: 39A13 39A27 39A12 26A33 PDF BibTeX XML Cite \textit{C. Chen} et al., Turk. J. Math. 44, No. 3, 857--869 (2020; Zbl 1450.39002) Full Text: DOI
Zhang, Zhengqi; Zhou, Zhi Numerical analysis of backward subdiffusion problems. (English) Zbl 1452.65216 Inverse Probl. 36, No. 10, Article ID 105006, 27 p. (2020). MSC: 65M32 65M30 65N30 65M22 65D32 65M15 33E17 35R11 26A33 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{Z. Zhou}, Inverse Probl. 36, No. 10, Article ID 105006, 27 p. (2020; Zbl 1452.65216) Full Text: DOI