×

Dimensionality reduction of bistable biological systems. (English) Zbl 1308.92042

Summary: Time hierarchies, arising as a result of interactions between system’s components, represent a ubiquitous property of dynamical biological systems. In addition, biological systems have been attributed switch-like properties modulating the response to various stimuli across different organisms and environmental conditions. Therefore, establishing the interplay between these features of system dynamics renders itself a challenging question of practical interest in biology. Existing methods are suitable for systems with one stable steady state employed as a well-defined reference. In such systems, the characterization of the time hierarchies has already been used for determining the components that contribute to the dynamics of biological systems. However, the application of these methods to bistable nonlinear systems is impeded due to their inherent dependence on the reference state, which in this case is no longer unique. Here, we extend the applicability of the reference-state analysis by proposing, analyzing, and applying a novel method, which allows investigation of the time hierarchies in systems exhibiting bistability. The proposed method is in turn used in identifying the components, other than reactions, which determine the systemic dynamical properties. We demonstrate that in biological systems of varying levels of complexity and spanning different biological levels, the method can be effectively employed for model simplification while ensuring preservation of qualitative dynamical properties (i.e., bistability). Finally, by establishing a connection between techniques from nonlinear dynamics and multivariate statistics, the proposed approach provides the basis for extending reference-based analysis to bistable systems.

MSC:

92C42 Systems biology, networks
92C40 Biochemistry, molecular biology

Software:

Optknock; crntwin
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, J., Chang, Y.-C., & Papachristodoulou, A. (2011). Model decomposition and reduction tools for large-scale networks in systems biology. Automatica, 47, 1165–1174. · Zbl 1235.93018 · doi:10.1016/j.automatica.2011.03.010
[2] Blauwkamp, T. A., & Ninfa, A. J. (2002). Physiological role of the glnk signal transduction protein of Escherichia coli: survival of nitrogen starvation. Mol. Microbiol., 46, 203–214. · doi:10.1046/j.1365-2958.2002.03153.x
[3] Burgard, A. P., Pharkya, P., & Maranas, C. D. (2003). Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng., 84(6), 647–657. · doi:10.1002/bit.10803
[4] Calzolari, D., Paternostro, G., Patrick, L., Harrington, Jr., Piermarocchi, C., & Duxbury, P. M. (2007). Selective control of the apoptosis signaling network in heterogeneous cell populations. PLoS ONE, 2(6), e547. · doi:10.1371/journal.pone.0000547
[5] Chung, B. K. S., & Lee, D. Y. (2009). Flux-sum analysis: a metabolite-centric approach for understanding the metabolic network. BMC Syst. Biol., 3, 117. · doi:10.1186/1752-0509-3-117
[6] Ciliberto, A., Capuani, F., & Tyson, J. J. (2007). Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation. PLoS Comput. Biol., 3(3), e45. · doi:10.1371/journal.pcbi.0030045
[7] Conradi, C., Saez-Rodriguez, J., Gilles, E.-D., & Raisch, J. (2005). Using chemical reaction network theory to discard a kinetic mechanism hypothesis. In IEE proc. systems biology, December 2005 (Vol. 152, pp. 243–248).
[8] Conradi, C., Saez-Rodriguez, J., Gilles, E.-D., & Raisch, J. (2006). Chemical reaction network theory: a tool for systems biology. In Proceedings of the 5th MATHMOD, 2006.
[9] Conradi, C., Flockerzi, D., Raisch, J., & Stelling, J. (2007a). Subnetwork analysis reveals dynamic features of complex (bio)chemical networks. Proc. Natl. Acad. Sci., 104(49), 19175–19180. · doi:10.1073/pnas.0705731104
[10] Conradi, C., Flockerzi, D., & Raisch, J. (2007b). Saddle-node bifurcations in biochemical reaction networks with mass action kinetics and application to a double-phosphorylation mechanism. In 2007 American control conference, New York City, USA, July 11–13, 2007 (pp. 6103–6109).
[11] Craciun, G., Tang, Y., & Feinberg, M. (2006). Understanding bistability in complex enzyme-driven reaction networks. Proc. Natl. Acad. Sci., 103(23), 8697–8702. · Zbl 1254.93116 · doi:10.1073/pnas.0602767103
[12] del Rio, G., Koschützki, D., & Coello, G. (2009). How to identify essential genes from molecular networks? BMC Syst. Biol., 3(102).
[13] Ellison, P., & Feinberg, M. (2000). How catalytic mechanisms reveal themselves in multiple steady-state data: I. Basic principles. J. Mol. Catal. A, Chem., 154, 155–167. · doi:10.1016/S1381-1169(99)00371-4
[14] Errede, B., Cade, R. M., Yashar, B. M., Kamada, Y., Levin, D. E., Irie, K., & Matsumoto, K. (1995). Dynamics and organization of map kinase signal pathways. Mol. Reprod. Dev., 42, 477–485. · doi:10.1002/mrd.1080420416
[15] Feinberg, M., & Ellison, P. (2000). The chemical reaction network toolbox. www.chbmeng.ohio-state.edu/\(\sim\)feinberg/crnt , version 1.1a. Accessed October 2007.
[16] Fell, D. A. (1992). Metabolic control analysis: a survey of its theoretical and experimental development. Biochem. J., 286, 313–330.
[17] Ferell, J. E. Jr., & Macheleder, E. M. (1998). The biochemical basis of an all-or-none cell fate switch in xenopus oocytes. Science, 280, 895–989. · doi:10.1126/science.280.5365.895
[18] Flach, E. H., & Schnell, S. (2006). Use and abuse of the quasi-steady-state approximation. IEE Proc. Syst. Biol., 153, 187–191. · doi:10.1049/ip-syb:20050104
[19] Gifi, A. (1990). Nonlinear multivariate analysis. Chichester: Wiley. · Zbl 0697.62048
[20] Gustin, M. C., Albertyn, J., Alexander, M., & Davenport, K. (1998). Map kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev., 62, 1264–1300.
[21] Heinrich, R., & Schuster, S. (1996). The regulation of cellular systems. Berlin: Springer. Chap. 4: Time hierarchy in metabolism. · Zbl 0895.92013
[22] Ho, P.-Y., & Li, H.-Y. (2000). Determination of multiple steady states in an enzyme kinetics involving two substrates in a cstr. Bioprocess Eng., 22, 557–561. · doi:10.1007/s004499900111
[23] Horst, P. (1961). Relations among m sets of measures. Psychometrika, 26, 129–149. · Zbl 0099.35801 · doi:10.1007/BF02289710
[24] Hundin, A., & Kaer, M. (1998). The effect of slow allosteric transitions in a simple biochemical oscillator model. J. Theor. Biol., 191, 309–322. · doi:10.1006/jtbi.1997.0587
[25] Jamshidi, N., & Palsson, B. O. (2008). Top-down analysis of temporal hierarchy in biochemical reaction networks. PLoS Comput. Biol., 4(9), e1000177. · doi:10.1371/journal.pcbi.1000177
[26] Jamshidi, N., & Palsson, B. O. (2010). Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. Biophys. J., 98, 175–185. · doi:10.1016/j.bpj.2009.09.064
[27] Kholodenko, B. N. (2006). Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol., 7, 165–176. · doi:10.1038/nrm1838
[28] Kim, P. J., Lee, D. Y., Kim, T. Y., Lee, K. H., Jeong, H., Lee, S. Y., & Park, S. (2007). Metabolite essentiality elucidates robustness of Escherichia coli metabolism. Proc. Natl. Acad. Sci. USA, 104, 13638–13642. · doi:10.1073/pnas.0703262104
[29] Kim, T. Y., Kim, H. U., & Lee, S. Y. (2009). Metabolite-centric approaches for the discovery of antibacterials using genome-scale metabolic networks. Metab. Eng.
[30] Koseska, A., Ullner, E., Volkov, E., Kurths, J., & García-Ojalvo, J. (2010). Cooperative differentiation through clustering in multicellular population. J. Theor. Biol., 263, 189–202. · doi:10.1016/j.jtbi.2009.11.007
[31] Leitold, A., Hangos, K. M., & Tuza, Zs. (2002). Structure simplification of dynamic process models. J. Process Control, 12, 69–83. · doi:10.1016/S0959-1524(00)00062-7
[32] Lewis, T. S., Shapiro, P. S., & Ahn, N. G. (1998). Signal transduction through map kinase cascades. Adv. Cancer Res., 74, 49–139. · doi:10.1016/S0065-230X(08)60765-4
[33] Li, H. Y. (1998). The determination of multiple steady states in circular reaction networks involving heterogeneous catalysis isothermal cfstrs. Chem. Eng. Sci., 53, 3703–3710. · doi:10.1016/S0009-2509(98)00160-2
[34] Liao, J. R., & Lightfoot, E. N. Jr. (1987). Extending the quasi-steady state concept to analysis of metabolic networks. J. Theor. Biol., 126, 253–273. · doi:10.1016/S0022-5193(87)80234-5
[35] Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. New York: Academic Press. · Zbl 0432.62029
[36] Markevich, N. I., Hoek, J. B., & Kholodenko, B. N. (2004). Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol., 164(3), 353–359. · doi:10.1083/jcb.200308060
[37] Mendenhall, M. D., & Hodge, A. E. (1998). Regulation of Cdc28 cyclin-dependent protein kinase activity during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev., 62, 1191–1243.
[38] Motter, A. E., Gulbahce, N., Almaas, E., & Barabasi, A. L. (2008). Predicting synthetic rescues in metabolic networks. Mol. Syst. Biol., 4, 168. · doi:10.1038/msb.2008.1
[39] Okino, M. S., & Mavrovouniotis, M. L. (1998). Simplification of mathematical models of chemical reaction systems. Chem. Rev., 98, 391–408. · doi:10.1021/cr950223l
[40] Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I., & van Oudenaanrdern, A. (2004). Multistability in the lactose utilization network of Escherichia coli. Nature, 427, 737–740. · doi:10.1038/nature02298
[41] Palsson, B. O., Palsson, H., & Lightfoot, E. N. (1984). Mathematical modeling of dynamics and control in metabolic networks: II. Simple dimeric enzymes. J. Theor. Biol., 303–321.
[42] Palsson, B. O., Palsson, H., & Lightfoot, E. N. (1985). Mathematical modeling of dynamics and control in metabolic networks: III. Linear reaction sequences. J. Theor. Biol., 231–259.
[43] Pearson, G., Robinson, F., Gibson, T. B., Xu, B.-E., Karandikar, M., Berman, K., & Cobb, M. H. (2001). Mitogen-activated protein (map) kinase pathways: regulation and physiological functions. Endocr. Rev., 22, 153–183. · doi:10.1210/er.22.2.153
[44] Peter, I. S., & Davidson, E. H. (2011). A gene regulatory network controlling the embryonic specification of endoderm. Nature, 474, 635–639. · doi:10.1038/nature10100
[45] Pharkya, P., & Maranas, C. D. (2006). An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab. Eng., 8, 1–13. · doi:10.1016/j.ymben.2005.08.003
[46] Pomerening, J. R., Sontag, E. D., & Ferell, J. R. Jr. (2003). Building a cell-cycle oscillator: hysteresis and bistability in the activation of cdc2. Nat. Cell Biol., 5, 346–351. · doi:10.1038/ncb954
[47] Reich, J. G., & Selkov, E. (1975). Time hierarchy, equilibrium and non-equilibrium in metabolic systems. Biosystems, 7, 39–50. · doi:10.1016/0303-2647(75)90041-6
[48] Schneider, K. R., & Wilhelm, T. (2000). Model reduction by extended quasi-steady-state approximation. J. Math. Biol., 40, 443–450. · Zbl 0970.92028 · doi:10.1007/s002850000026
[49] Segel, L. A. (1988). On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol., 50, 579–593. · Zbl 0653.92006
[50] Segel, L. A., & Slemrod, M. (1989). The quasi-steady-state assumption: a case study in perturbation. SIAM Rev., 31, 446–477. · Zbl 0679.34066 · doi:10.1137/1031091
[51] Soule, C. (2003). Graphic requirements for multistationarity. Complexus, 1, 123–133. · doi:10.1159/000076100
[52] Steuer, R., Gross, T., Selbig, J., & Blasius, B. (2006). Structural kinetic modeling of metabolic networks. Proc. Natl. Acad. Sci., 103(32), 11868–11873. · doi:10.1073/pnas.0600013103
[53] Surovtsova, I., Simus, N., Huebner, K., Sahle, S., & Kummer, U. (2012). Simplification of biochemical models: a general approach based on the analysis of the impact of individual species and reactions on the systems dynamics. BMC Syst. Biol., 6(14).
[54] Suzuki, N., Furusawa, C., & Kaneko, K. (2011). Oscillatory protein expression dynamics endows stem cell with robust differentiation potential. PLoS ONE, 6, e27232.
[55] Thomson, M., & Gunawardena, J. (2009). Unlimited multistability in multisite phosphorylation systems. Nature, 460, 274–277. · doi:10.1038/nature08102
[56] Yamada, T., & Bork, P. (2009). Evolution of biomolecular networks–lessons from metabolic and protein interactions. Nat. Rev. Mol. Cell Biol., 10(11), 791–803. · doi:10.1038/nrm2787
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.