×

The inverse spectral problem for selfadjoint Hankel operators. (English) Zbl 0865.47015

A characterization of selfadjoint operators that are unitarily equivalent to a Hankel operator is obtained. This problem is closely connected with the theory of a stationary processes and the theory of linear dynamical systems with one-dimensional input and one-dimensional output. The connection between the considered problem and the balanced realization is described.

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
47B25 Linear symmetric and selfadjoint operators (unbounded)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Birman, M. Sh. &Solomyak, M. Z.,Spectral Theory of Self-Adjoint Operators in Hilbert Space. Reidel, Dordrecht, 1987. · Zbl 0744.47017
[2] –, Operator integration, perturbations, and commutators.Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 170 (1989), 34–56 (Russian). · Zbl 0709.47022
[3] Clark, D. N., On the spectra of bounded Hermitian Hankel matrices.Amer. J. Math., 90 (1968), 627–656. · Zbl 0159.43201 · doi:10.2307/2373546
[4] Douglas, R. G., On majorization, factorization and range inclusion of operators on Hilbert space.Proc. Amer. Math. Soc., 17 (1966), 413–415. · Zbl 0146.12503 · doi:10.1090/S0002-9939-1966-0203464-1
[5] –Banach Algebra Techniques in Operator Theory. Academic Press, New York, 1972. 88. Springer-Verlag, Berlin-New York, 1987. · Zbl 0247.47001
[6] Glover, K., All optimal Hankel-norm approximations of linear multivariable systems and theirL error bounds.Internat. J. Control, 39 (1984), 1115–1193. · Zbl 0543.93036 · doi:10.1080/00207178408933239
[7] Howland, J. S., Spectral theory of self-adjoint Hankel matrices.Michigan Math. J., 33 (1986), 145–153. · Zbl 0644.47027 · doi:10.1307/mmj/1029003344
[8] Howland, J. S., Spectral theory of operators of Hankel type. I. Preprint, 1991.
[9] Howland, J. S., Spectral theory of operators of Hankel type. II. Preprint, 1991.
[10] Helton, J. W. & Woerdeman, H. J., Symmetric Hankel operators: minimal norm extensions and eigenfunctions. Preprint, 1990. · Zbl 0774.15015
[11] Kato, T.,Perturbation Theory for Linear Operators. Springer-Verlag, Berlin-New York, 1966. · Zbl 0148.12601
[12] Khrushchev, S. V. &Peller, V. V., Moduli of Hankel operators, past and future, inLinear and Complex Analysis Problem Book. Lecture Notes in Math., 1043, pp. 92–97. Springer-Verlag, Berlin-New York, 1984.
[13] Nikol’skii, N. K.,Treatise on the Shift Operator. Spectral Function Theory. Springer-Verlag, Berlin-Heidelberg, 1986.
[14] Ober, R. J., A note on a system theoretic approach to a conjecture by Peller-Khrushchev.Systems Control Lett., 8 (1987), 303–306. · Zbl 0644.93011 · doi:10.1016/0167-6911(87)90095-8
[15] –, A note on a system theoretic approach to a conjecture by Peller-Khrushchev: the general case.IMA J. Math. Control Inform., 7 (1990), 35–45. · Zbl 0717.93014 · doi:10.1093/imamci/7.1.35
[16] Ober, R. J. &Montgomery-Smith, S., Bilinear transformation of infinite-dimensional state-space systems and balanced realizations of non-rational transfer functions.SIAM J. Control Optim., 28 (1990), 438–465. · Zbl 0693.93014 · doi:10.1137/0328024
[17] Partington, J. R.,An Introduction to Hankel Operators. London Math. Soc. Stud. Texts, 13. Cambridge Univ. Press, Cambridge, 1988. · Zbl 0668.47022
[18] Peller, V. V., Hankel operators and continuity properties of best approximation operators.Algebra i Analiz, 2:1 (1990), 163–189; English translation inLeningrad Math. J., 2 (1991), 139–160. · Zbl 0714.47018
[19] Peller, V. V. &Khrushchev, S. V., Hankel operators, best approximations, and stationary Gaussian processes.Uspekhi Mat. Nauk, 37:1 (1982), 53–126; English translation inRussian Math. Surveys, 37:1 (1982), 61–144. · Zbl 0505.60043
[20] Power, S. C.,Hankel Operators on Hilbert Space. Research Notes in Math., 64. Pitman, Boston, MA, 1982. · Zbl 0489.47011
[21] Read, M. &Simon, B.,Methods of Modern Mathematical Physics IV:Analysis of Operators. Academic Press, New York-London, 1978.
[22] Salamon, D., Realization theory in Hilbert space.Math. Systems Theory, 21 (1989), 147–164. · Zbl 0668.93018 · doi:10.1007/BF02088011
[23] Sz.-Nagy, B. &Foias, C.,Harmonic Analysis of Operators on Hilbert Space. Akadémiai Kiadó, Budapest, 1970.
[24] Treil, S. R., Moduli of Hankel operators and a problem of Peller-Khrushchev.Dokl. Akad. Nauk SSSR, 283 (1985), 1095–1099; English translation inSoviet Math. Dokl., 32 (1985), 293–297. · Zbl 0579.47025
[25] –, The inverse spectral problem for the modulus of Hankel operator and balanced realizations.Algebra i Analiz, 2:2 (1990), 158–182; English translation inLeningrad Math. J., 2 (1991), 353–375.
[26] Treil, S. R. &Vasyunin, V. I., The inverse spectral problem for the modulus of a Hankel operator.Algebra i Analiz, 1:4 (1989), 54–67; English translation inLeningrad Math. J., 1 (1990), 859–870. · Zbl 0716.47017
[27] Young, N. J., Balanced realizations in infinite dimensions, inOperator Theory and Systems (Amsterdam, 1985). Oper. Theory: Adv. Appl., 19, pp. 449–471. Birkhäuser, Basel, 1976.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.