zbMATH — the first resource for mathematics

Automatic evaluation of UV and \(R_2\) terms for beyond the standard model Lagrangians: a proof-of-principle. (English) Zbl 1351.81006
Summary: The computation of renormalized one-loop amplitudes in quantum field theory requires not only the knowledge of the Lagrangian density and the corresponding Feynman rules, but also that of the ultraviolet counterterms. More in general, and depending also on the method used in the actual computation of the one-loop amplitudes, additional interactions might be needed. One example is that of the \(R_2\) rational terms in the OPP method. In this paper, we argue that the determination of all elements necessary for loop computations in arbitrary models can be automated starting only from information on the Lagrangian at the tree-level. In particular, we show how the \(R_2\) rational and ultraviolet counterterms for any renormalizable model can be computed with the help of a new package, which we name NLOCT and builds upon FeynRules and FeynArts. To show the potential of our approach, we calculate all additional rules that are needed to promote a Two Higgs Doublet Model Lagrangian to one-loop computations in QCD and electroweak couplings.

81-04 Software, source code, etc. for problems pertaining to quantum theory
81T18 Feynman diagrams
81-08 Computational methods for problems pertaining to quantum theory
Full Text: DOI
[1] J. Butterworth, G. Dissertori, S. Dittmaier, D. de Florian, N. Glover, et al. Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report. arXiv:1405.1067.
[2] Ossola, G.; Papadopoulos, C. G.; Pittau, R., Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl.Phys. B, 763, 147-169, (2007), arXiv:hep-ph/0609007 · Zbl 1116.81067
[3] Britto, R.; Cachazo, F.; Feng, B., Generalized unitarity and one-loop amplitudes in \(N = 4\) super-Yang-Mills, Nucl.Phys. B, 725, 275-305, (2005), arXiv:hep-th/0412103 · Zbl 1178.81202
[4] Hirschi, V.; Frederix, R.; Frixione, S.; Garzelli, M. V.; Maltoni, F., Automation of one-loop QCD corrections, J. High Energy Phys., 1105, 044, (2011), arXiv:1103.0621 · Zbl 1296.81138
[5] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. arXiv:1405.0301.
[6] Alwall, J.; Herquet, M.; Maltoni, F.; Mattelaer, O.; Stelzer, T., Madgraph 5 : going beyond, J. High Energy Phys., 1106, 128, (2011), arXiv:1106.0522 · Zbl 1298.81362
[7] Ossola, G.; Papadopoulos, C. G.; Pittau, R., On the rational terms of the one-loop amplitudes, J. High Energy Phys., 0805, 004, (2008), arXiv:0802.1876
[8] t Hooft, G.; Veltman, M., Regularization and renormalization of gauge fields, Nucl.Phys. B, 44, 189-213, (1972)
[9] D. Kreimer, The Role of gamma(5) in dimensional regularization. arXiv:hep-ph/9401354.
[10] Korner, J.; Kreimer, D.; Schilcher, K., A practicable gamma(5) scheme in dimensional regularization, Z.Phys. C, 54, 503-512, (1992)
[11] Kreimer, D., The \(\gamma\)(5) problem and anomalies: a Clifford algebra approach, Phys.Lett. B, 237, 59, (1990)
[12] Draggiotis, P.; Garzelli, M.; Papadopoulos, C.; Pittau, R., Feynman rules for the rational part of the QCD 1-loop amplitudes, J. High Energy Phys., 0904, 072, (2009), arXiv:0903.0356
[13] Garzelli, M.; Malamos, I.; Pittau, R., Feynman rules for the rational part of the electroweak 1-loop amplitudes, J. High Energy Phys., 1001, 040, (2010), http://dx.doi.org/10.1007/JHEP10(2010)097, http://dx.doi.org/10.1007/JHEP01(2010)040, arXiv:0910.3130 · Zbl 1269.81214
[14] Shao, H.-S.; Zhang, Y.-J., Feynman rules for the rational part of one-loop QCD corrections in the MSSM, J. High Energy Phys., 1206, 112, (2012), arXiv:1205.1273
[15] Garzelli, M.; Malamos, I., R2SM: A package for the analytic computation of the \(R_2\) rational terms in the standard model of the electroweak interactions, Eur.Phys.J. C, 71, 1605, (2011), arXiv:1010.1248
[16] A. Alloul, N.D. Christensen, C. Degrande, C. Duhr, B. Fuks, FeynRules 2.0—A complete toolbox for tree-level phenomenology. arXiv:1310.1921.
[17] Hahn, T., Generating Feynman diagrams and amplitudes with feynarts 3, Comput. Phys. Commun., 140, 418-431, (2001), arXiv:hep-ph/0012260 · Zbl 0994.81082
[18] Degrande, C.; Duhr, C.; Fuks, B.; Grellscheid, D.; Mattelaer, O., UFO—the universal feynrules output, Comput. Phys. Commun., 183, 1201-1214, (2012), arXiv:1108.2040
[19] Cullen, G.; Greiner, N.; Heinrich, G.; Luisoni, G.; Mastrolia, P., Automated one-loop calculations with gosam, Eur. Phys. J. C, 72, 1889, (2012), arXiv:1111.2034
[20] Denner, A.; Dittmaier, S.; Roth, M.; Wieders, L., Electroweak corrections to charged-current \(e^+ e^-\) to 4 fermion processes: technical details and further results, Nucl. Phys. B, 724, 247-294, (2005), http://dx.doi.org/10.1016/j.nuclphysb.2011.09.001, http://dx.doi.org/10.1016/j.nuclphysb.2005.06.033, arXiv:hep-ph/0505042
[22] Denner, A., Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortschr. Phys., 41, 307-420, (1993)
[23] M. Bohm, A. Denner, H. Joos, Gauge theories of the strong and electroweak interaction. · Zbl 0991.81001
[24] Burkhardt, H.; Pietrzyk, B., Update of the hadronic contribution to the QED vacuum polarization, Phys. Lett. B, 356, 398-403, (1995)
[25] Dittmaier, S.; Michael, Kramer, Electroweak radiative corrections to W boson production at hadron colliders, Phys. Rev. D, 65, (2002), arXiv:hep-ph/0109062
[26] Eidelman, S.; Jegerlehner, F., Hadronic contributions to g-2 of the leptons and to the effective fine structure constant alpha \((M(z) \ast \ast 2)\), Z. Phys. C, 67, 585-602, (1995), arXiv:hep-ph/9502298
[27] Beenakker, W.; Dittmaier, S.; Kramer, M.; Plumper, B.; Spira, M., NLO QCD corrections to t anti-t H production in hadron collisions, Nucl. Phys. B, 653, 151-203, (2003), arXiv:hep-ph/0211352
[28] Branco, G. C.; Lavoura, L.; Silva, J. P., CP violation, Int. Ser. Monogr. Phys., 103, 1-536, (1999)
[29] Haber, H. E.; O’Neil, D., Basis-independent methods for the two-Higgs-doublet model. II. the significance of tan beta, Phys. Rev. D, 74, (2006), arXiv:hep-ph/0602242
[30] Eriksson, D.; Rathsman, J.; Stal, O., 2HDMC: two-Higgs-doublet model calculator physics and manual, Comput. Phys. Commun., 181, 189-205, (2010), arXiv:0902.0851 · Zbl 1205.82016
[31] Plehn, T., Charged Higgs boson production in bottom gluon fusion, Phys. Rev. D, 67, (2003), arXiv:hep-ph/0206121
[32] Berger, E. L.; Han, T.; Jiang, J.; Plehn, T., Associated production of a top quark and a charged Higgs boson, Phys. Rev. D, 71, (2005), arXiv:hep-ph/0312286
[33] Gerard, J.-M.; Herquet, M., A twisted custodial symmetry in the two-Higgs-doublet model, Phys. Rev. Lett., 98, (2007), arXiv:hep-ph/0703051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.