×

Highly physical penumbra solar radiation pressure modeling with atmospheric effects. (English) Zbl 1429.86007

Summary: We present a new method for highly physical solar radiation pressure (SRP) modeling in Earth’s penumbra. The fundamental geometry and approach mirrors past work, where the solar radiation field is modeled using a number of light rays, rather than treating the Sun as a single point source. However, we aim to clarify this approach, simplify its implementation, and model previously overlooked factors. The complex geometries involved in modeling penumbra solar radiation fields are described in a more intuitive and complete way to simplify implementation. Atmospheric effects are tabulated to significantly reduce computational cost. We present new, more efficient and accurate approaches to modeling atmospheric effects which allow us to consider the high spatial and temporal variability in lower atmospheric conditions. Modeled penumbra SRP accelerations for the Gravity Recovery and Climate Experiment (GRACE) satellites are compared to the \(\text{sub-}nm/s^2\) precision GRACE accelerometer data. Comparisons to accelerometer data and a traditional penumbra SRP model illustrate the improved accuracy which our methods provide. Sensitivity analyses illustrate the significance of various atmospheric parameters and modeled effects on penumbra SRP. While this model is more complex than a traditional penumbra SRP model, we demonstrate its utility and propose that a highly physical model which considers atmospheric effects should be the basis for any simplified approach to penumbra SRP modeling.

MSC:

86A25 Geo-electricity and geomagnetism
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, G.P., Chetwynd, J.H., Clough, S.A., Shettle, E.P., Kneizys, F.X.: AFGL atmospheric constituent profiles (0-120 km). Tech. Rep. AFGL-TR-86-0110, Air Force Geophysics Laboratory (1986)
[2] Ångström, A.: On the atmospheric transmission of Sun radiation and on dust in the air. Geogr. Ann. 11, 156-166 (1929). doi:10.2307/519399 · doi:10.2307/519399
[3] ASTM: Standard tables for reference solar spectral irradiances: direct normal and hemispherical on \[37^\circ \]∘ tilted surface. doi:10.1520/G0173-03R12 (2012)
[4] ASTM: Standard solar constant and zero air mass solar spectral irradiance tables. doi:10.1520/E0490 (2014) · Zbl 0117.18103
[5] Auer, L.H., Standish, E.M.: Astronomical refraction: computational method for all zenith angles. Astron. J. 199(5), 2472-2474 (2000). doi:10.1086/301325 · doi:10.1086/301325
[6] Bates, D.R.: Rayleigh scattering by air. Planet. Space Sci. 32, 785-790 (1984). doi:10.1016/0032-0633(84)90102-8 · doi:10.1016/0032-0633(84)90102-8
[7] Bettadpur, S.: Gravity recovery and climate experiment product specification document (Rev 4.5—February 20, 2007). Tech. Rep. GRACE 327-720/CSR-GR-03-02, Center for Space Research, The University of Texas at Austin. ftp://podaac.jpl.nasa.gov/pub/grace/doc/ProdSpecDoc_v4.5.pdf (2007)
[8] Bettadpur, S.: Recommendation for a-priori bias & scale parameters for Level-1B ACC data (Release 00). http://podaac-www.jpl.nasa.gov/ (2009)
[9] Bird, R.E.: A simple, solar spectral model for direct-normal and diffuse horizontal irradiance. Sol. Energy 32(4), 461-471 (1984). doi:10.1016/0038-092X(84)90260-3 · doi:10.1016/0038-092X(84)90260-3
[10] Cameron, W.S., Glenn, J.H., Carpenter, M.S., O’Keefe, J.A.: Effect of refraction on the setting Sun as seen from space in theory and observation. Astron. J. 68, 348 (1963). doi:10.1086/108982 · doi:10.1086/108982
[11] Cheng, M., Ries, J.C., Tapley, B.D.: Assessment of solar radiation model for GRACE orbit determination. Adv. Astronaut. Sci. 129, 501-510 (2007)
[12] COESA: US Standard Atmosphere Supplements, 1966. Commitee for the Extension of the Standard Atmosphere, US Government Printing Office, Washington, DC (1966)
[13] Doornbos, E., Scharroo, R., Klinkrad, H., Zandbergen, R., Fritsche, B.: Improved modelling of surface forces in the orbit determination of ERS and ENVISAT. Can. J. Remote Sens. 28(4), 535-543 (2002). doi:10.5589/m02-055 · doi:10.5589/m02-055
[14] Doornbos, E., Förster, M., Fritsche, B., van Hellepute, T., van den IJssel, J., Koppenwallner, G., Lühr, H., Rees, D., Visser, P., Kern, M.: Air density models derived from multisatellite drag observations. In: Proceedings of the ESA’s Second Swarm International Science Meeting (2010)
[15] ESA: Gravity Recovery and Steady-state Ocean Circulation Mission. Tech. Rep. ESA SP-1233(1), ESA publication division (1999)
[16] Ferraz-Mello, S.: Sur le probleme de la pression de radiations dans la theorie des satellites artificiels. Comptes Rendus de l’Académie des Sci. 258, 463 (1964) · Zbl 0117.18103
[17] Ferraz-Mello, S.: Analytical study of the Earth’s shadowing effects on satellite orbits. Celest. Mech. 5(1), 80-101 (1972). doi:10.1007/BF01227825 · doi:10.1007/BF01227825
[18] Flury, J., Bettadpur, S., Tapley, B.D.: Precise accelerometry onboard the GRACE gravity field satellite mission. Adv. Space Res. 42(8), 1414-1423 (2008). doi:10.1016/j.asr.2008.05.004 · doi:10.1016/j.asr.2008.05.004
[19] Garfinkel, B.: An investigation in the theory of astronomical refraction. Astron. J. 50, 169-179 (1944). doi:10.1086/105767 · doi:10.1086/105767
[20] Garfinkel, B.: Astronomical refraction in a polytropic atmosphere. Astron. J. 72, 235-254 (1967). doi:10.1086/110225 · doi:10.1086/110225
[21] Gueymard, C.: Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Solar Energy 71(5), 325-346 (2001). doi:10.1016/s0038-092x(01)00054-8 · doi:10.1016/s0038-092x(01)00054-8
[22] Hubaux, C., Lematre, A., Delsate, N., Carletti, T.: Symplectic integration of space debris motion considering several Earth’s shadowing models. Adv. Space Res. 49(10), 1472-1486 (2012). doi:10.1016/j.asr.2012.02.009 · doi:10.1016/j.asr.2012.02.009
[23] Jursa, A.S. (ed).: Handbook of geophysics and the space environment. Air Force Geophysics Laboratory Hanscom (1985)
[24] Kabeláč, J.: Shadow function—contribution to the theory of the motion of artificial satellites. Bull. Astron. Inst. Czechoslov. 39(4), 213-220 (1988) · Zbl 0665.70038
[25] Kozai, Y.: Effects of Solar Radiation Pressure on the Motion of an Artificial Satellite. SAO Special Report 56 (1961)
[26] Lála, P.: Semi-analytical theory of solar pressure perturbations of satellite orbits during short time intervals. Bull. Astron. Inst. Czechoslov. 22(2), 63-72 (1971)
[27] Lála, P., Sehnal, L.: The Earth’s shadowing effects in the short-periodic perturbations of satellite orbits. Bull. Astron. Inst. Czechoslov. 20, 328 (1969)
[28] Lelli, L., Kokhanovsky, A.A., Rozanov, V.V., Vountas, M., Sayer, A.M., Burrows, J.P.: Seven years of global retrieval of cloud properties using space-borne data of GOME-1. Atmos. Meas. Tech. Discuss. 4, 4991-5035 (2011). doi:10.5194/amtd-4-4991-2011 · doi:10.5194/amtd-4-4991-2011
[29] Link, F.: Eclipses de satellites artificiels. Bull. Astron. Inst. Czechoslov. 13(1), 1-8 (1962) · Zbl 0163.46204
[30] McCartney, E.J.: Optics of the Atmosphere: Scattering by Molcules and Particles. Wiley, New York (1976)
[31] McMahon, J.W., Scheeres, D.J.: New solar radiation pressure force model for navigation. J. Guid. Control Dyn. 33, 1418-1428 (2010). doi:10.2514/1.48434 · doi:10.2514/1.48434
[32] Montenbruck, O., Gill, E.: Satellite Orbits—models, Methods and Applications. Springer, Berlin (2000) · Zbl 0949.70001
[33] Picard, A., Davis, R.S., Gläser, M., Fujii, K.: Revised formula for the density of moist air (CIPM-2007). Metrologia 45(2), 149 (2008). doi:10.1088/0026-1394/45/2/004 · doi:10.1088/0026-1394/45/2/004
[34] Reigber, C., Schwintzer, P., Lühr, H.: The CHAMP geopotential mission. In: Marson I, Sünkel H (eds) Bollettino di Geofisica Teorica ed Applicata, Vol. 40, No. 3-4, Sep.-Dec. 1999, Proceedings of the 2nd Joint Meeting of the International Gravity and the International Geoid Commission, Trieste 7-12 Sept. 1998, ISSN 0006-6729, pp. 285-289 (1999)
[35] Rossow, W.B., Schiffer, R.A.: Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 80, 2261-2288 (1999). doi:10.1175/1520-0477 · doi:10.1175/1520-0477
[36] Rothman, L.S., Gordon, I.E., Babikov, Y., Barbe, A., Benner, D.C., Bernath, O.F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L.R., et al.: The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130, 4-50 (2013). doi:10.1016/j.jqsrt.2013.07.002 · doi:10.1016/j.jqsrt.2013.07.002
[37] Sassen, K., Wang, Z., Liu, D.: Global distribution of cirrus clouds from cloudsat/cloud-aerosol lidar and infrared pathfinder satellite observations (CALIPSO) measurements. J. Geophys. Res. (Atmos.) 113(D8), D00A12 (2008). doi:10.1029/2008JD009972 · doi:10.1029/2008JD009972
[38] Seidelmann, P.K. (ed.): Explanatory Supplement to the Astronomical Almanac. University Science Books, Mill Valley, CA, United States Naval Observatory, Washington, DC (1992)
[39] Shettle, E.P., Fenn, R.W.: Models of the atmospheric aerosols and their optical properties. In: AGARD Conference Proceedings, Lyngby, Denmark, 183 (1976)
[40] Shettle, E.P., Fenn, R.W.: Models of the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations On Their Optical Properties. Tech. Rep. TR-79-0214, ADA 085951, AFGL (1979)
[41] Shoemake, K.: Animating rotation with quaternion curves. In: ACM SIGGRAPH Computer Graphics. ACM, vol. 19, pp. 245-254 (1985). doi:10.1145/325165.325242
[42] Tapley, B.D., Bettadpur, S., Watkins, M., Reigber, C.: The gravity recovery and climate experiment, mission overview and early results. Geophys. Res. Lett. 31(9), L09,607 (2004). doi:10.1029/2004GL019920 · doi:10.1029/2004GL019920
[43] Tapley, B.D., Ries, J.C., Bettadpur, S., Cheng, M.: Neutral density measurements from the gravity recovery and climate experiment accelerometers. J. Spacecr. Rockets 44(6), 1220-1225 (2007). doi:10.2514/1.28843
[44] Thomas, G., Stamnes, K.: Radiative Transfer in the Atmosphere and Ocean. Atmospheric and Space Science, Cambridge University Press (2002). http://books.google.com/books?id=DxR2nEp0CUIC · Zbl 1374.86001
[45] Van Helleputte, T., Doornbos, E., Visser, P.: CHAMP and GRACE accelerometer calibration by GPS-based orbit determination. Adv. Space Res. 43(12), 1890-1896 (2009). doi:10.1016/j.asr.2009.02.017 · doi:10.1016/j.asr.2009.02.017
[46] Vokrouhlický, D., Farinella, P., Mignard, F.: Solar radiation pressure perturbations for Earth satellites, I. A complete theory including penumbra transitions. Astron. Astrophys. 280, 295-312 (1993)
[47] Vokrouhlický, D., Farinella, P., Mignard, F.: Solar radiation pressure perturbations for Earth satellites, IV. Effects of the Earth’s polar flattening on the shadow structure and the penumbra transitions. Astron. Astrophys. 307, 635-644 (1996)
[48] Wyatt, S.P.: The effect of radiation pressure on the secular acceleration of satellites. SAO Special Report 60 (1961)
[49] Wylie, D., Jackson, D.L., Menzel, W.P., Bates, J.J.: Trends in global cloud cover in two decades of HIRS observations. J. Clim. 18, 3021-3031 (2005). doi:10.1175/JCLI3461.1 · doi:10.1175/JCLI3461.1
[50] Ziebart, M.: Generalized analytical solar radiation pressure modeling algorithm for spacecraft of complex shape. J. Spacecr. Rockets 41(5), 840-848 (2004) · doi:10.2514/1.13097
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.