zbMATH — the first resource for mathematics

Trace asymptotics for fractional Schrödinger operators. (English) Zbl 1290.35301
Summary: This paper proves an analogue of a result of R. Bañuelos and A. Sá Barreto [Commun. Partial Differ. Equations 20, No.  11–12, 2153–2164 (1995; Zbl 0843.35016)] on the asymptotic expansion for the trace of Schrödinger operators on \(\mathbb R^d\) when the Laplacian \(-{\Delta}\), which is the generator of the Brownian motion, is replaced by the non-local integral operator \((-{\Delta})^{{\alpha}/2}\), \(0 < {\alpha} < 2\), which is the generator of the symmetric stable process of order \({\alpha}\). These results also extend recent results of R. Bañuelos and S. Y. Yolcu [J. Lond. Math. Soc., II. Ser. 87, No. 1, 304–318 (2013; Zbl 1270.35142)] where the first two coefficients for \((-{\Delta})^{{\alpha}/2}\) are computed. Some extensions to Schrödinger operators arising from relativistic stable and mixed-stable processes are obtained.
Reviewer: Reviewer (Berlin)

35R11 Fractional partial differential equations
35J10 Schrödinger operator, Schrödinger equation
35K08 Heat kernel
60G52 Stable stochastic processes
Full Text: DOI
[1] Applebaum, D., Lévy processes and stochastic calculus, (2009), Cambridge University Press · Zbl 1200.60001
[2] (Arendt, W.; Schleich, W. P., Mathematical Analysis of Evolution, Information, and Complexity, (2009), Wiley-VCH Verlag GmbH & Co. KGaA Weinheim, Germany) · Zbl 1159.94001
[3] Bañuelos, R.; Kulczycki, T., Trace estimates for stable processes, Probab. Theory Related Fields, 142, 313-338, (2008) · Zbl 1184.60012
[4] Bañuelos, R.; Kulczycki, T.; Siudeja, B., On the heat trace of symmetry stables processes on Lipschitz domains, J. Funct. Anal., 257, 3329-3352, (2009) · Zbl 1189.60100
[5] Bañuelos, R.; Sá Barreto, A., On the heat trace of Schrödinger operators, Comm. Partial Differential Equations, 20, 2153-2164, (1995) · Zbl 0843.35016
[6] Bañuelos, R.; Yildirim, S., Heat trace of non-local operators, J. Lond. Math. Soc., 87, 1, 304-318, (2013) · Zbl 1270.35142
[7] P. Billingsley, Probability and Measure, third edition Wiley Series in Probability and Mathematical Statistics, 1995, pp. 327-352 378-386.
[8] Bogdan, K., Potential analysis of stable processes and its extensions, Lecture Notes in Math., vol. 1980, (2009), Springer-Verlag
[9] Chen, Z. Q.; Kim, P.; Song, R., Dirichlet heat kernel estimates for \(\operatorname{\Delta}^{\alpha / 2} + \operatorname{\Delta}^{\beta / 2}\), Illinois J. Math., 54, 1357-1392, (2010) · Zbl 1268.60101
[10] Chen, Z.-Q.; Kumagai, T., Heat kernel estimates for jump processes of mixed types on metric measure spaces, Probab. Theory Related Fields, 140, 277-317, (2008) · Zbl 1131.60076
[11] Colin de Verdière, Y., Une formule de trace pour lʼuperateur de Schrödinger dans \(\mathbb{R}^3\), Ann. Sci. Ecole Norm. Sup., 14, 27-39, (1981) · Zbl 0482.35068
[12] Datchev, K.; Hezari, H., Inverse problems in spectral geometry · Zbl 1316.35001
[13] Davies, E. B., Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, (1989), Cambridge University Press · Zbl 0699.35006
[14] Donnelly, H., Compactness of isospectral potentials, Trans. Amer. Math. Soc., 357, 1717-1730, (2005) · Zbl 1062.58033
[15] Hiroshima, F.; Ichinose, T.; Lörinczi, J., Path integral representation for Schrödinger operators with Bernstein functions of the Laplacian, (2010)
[16] Jakubowski, T.; Szczypkowski, K., Estimates of gradient perturbations series, (2011)
[17] Khoshnevisan, D., Topics in probability: Lévy processes, lecture notes · Zbl 0910.60061
[18] Lieb, E. H., Calculation of exchange second viral coefficient of a hard-sphere gas by path integrals, J. Math. Phys., 8, 43-52, (1967)
[19] McKean, H. P.; van Moerbeke, P., The spectrum of hillʼs equation, Invent. Math., 30, 217-274, (1975) · Zbl 0319.34024
[20] Penrose, M. D.; Penrose, O.; Stell, G., Sticky spheres in quantum mechanics, Rev. Math. Phys., 6, 947-975, (1994) · Zbl 0841.60094
[21] Sebah, P.; Gourdon, X., Introduction to the gamma function, (2002)
[22] Simon, B., Schrödinger semigroups, Bull. Amer. Math. Soc., 7, 447-526, (1982) · Zbl 0524.35002
[23] van den Berg, M., On the trace of the difference of Schrödinger heat semigroups, Proc. Roy. Soc. Edinburgh Sect. A, 119, 169-175, (1991) · Zbl 0767.47022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.