Dong, Zhao; Zhang, Rangrang Ergodicity for a class of semilinear stochastic partial differential equations. (English) Zbl 07248007 Math. Methods Appl. Sci. 43, No. 5, 2117-2136 (2020). MSC: 60H15 35B40 35R60 37A25 PDF BibTeX XML Cite \textit{Z. Dong} and \textit{R. Zhang}, Math. Methods Appl. Sci. 43, No. 5, 2117--2136 (2020; Zbl 07248007) Full Text: DOI
Kunze, Markus C. Diffusion with nonlocal Dirichlet boundary conditions on domains. (English) Zbl 07220470 Stud. Math. 253, No. 1, 1-38 (2020). MSC: 47D07 60J35 35B40 PDF BibTeX XML Cite \textit{M. C. Kunze}, Stud. Math. 253, No. 1, 1--38 (2020; Zbl 07220470) Full Text: DOI
Li, Shihu; Liu, Wei; Xie, Yingchao Ergodicity of 3D Leray-\(\alpha\) model with fractional dissipation and degenerate stochastic forcing. (English) Zbl 1447.60108 Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22, No. 1, Article ID 1950002, 20 p. (2019). MSC: 60H15 37A25 35R11 35Q30 PDF BibTeX XML Cite \textit{S. Li} et al., Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22, No. 1, Article ID 1950002, 20 p. (2019; Zbl 1447.60108) Full Text: DOI
Goudenège, Ludovic; Manca, Luigi Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise. (English) Zbl 1321.60134 Stochastic Processes Appl. 125, No. 10, 3785-3800 (2015). MSC: 60H15 60H07 37L40 PDF BibTeX XML Cite \textit{L. Goudenège} and \textit{L. Manca}, Stochastic Processes Appl. 125, No. 10, 3785--3800 (2015; Zbl 1321.60134) Full Text: DOI
Maller, Ross; Mason, David M. Stochastic compactness of Lévy processes. (English) Zbl 1243.60024 Houdré, Christian (ed.) et al., High dimensional probability. V: The Luminy volume. Most papers based on the presentations at the conference (HDP V), Luminy, France, May 26–30, 2008. Beachwood, OH: IMS, Institute of Mathematical Statistics (ISBN 978-0-940600-78-2). Institute of Mathematical Statistics Collections 5, 239-257 (2009). MSC: 60F05 62E17 60F15 60G51 62E20 PDF BibTeX XML Cite \textit{R. Maller} and \textit{D. M. Mason}, in: High dimensional probability. V: The Luminy volume. Most papers based on the presentations at the conference (HDP V), Luminy, France, May 26--30, 2008. Beachwood, OH: IMS, Institute of Mathematical Statistics. 239--257 (2009; Zbl 1243.60024) Full Text: DOI Euclid
Röckner, Michael; Zhang, Xicheng Stochastic tamed 3D Navier-Stokes equations: existence, uniqueness and ergodicity. (English) Zbl 1196.60118 Probab. Theory Relat. Fields 145, No. 1-2, 211-267 (2009). Reviewer: Dirk Blömker (Augsburg) MSC: 60H15 37A25 37L55 35R60 35Q30 76D05 PDF BibTeX XML Cite \textit{M. Röckner} and \textit{X. Zhang}, Probab. Theory Relat. Fields 145, No. 1--2, 211--267 (2009; Zbl 1196.60118) Full Text: DOI arXiv
Miao, Wei-Cheng Estimation of diffusion parameters in diffusion processes and their asymptotic normality. (English) Zbl 1158.62052 Int. J. Contemp. Math. Sci. 1, No. 13-16, 763-776 (2006). MSC: 62M05 60H10 62F12 PDF BibTeX XML Cite \textit{W.-C. Miao}, Int. J. Contemp. Math. Sci. 1, No. 13--16, 763--776 (2006; Zbl 1158.62052) Full Text: DOI
Hairer, Martin; Mattingly, Jonathan C. Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. (English) Zbl 1130.37038 Ann. Math. (2) 164, No. 3, 993-1032 (2006). MSC: 37L55 37A25 37N10 60H15 35R60 35Q30 76D05 76M35 PDF BibTeX XML Cite \textit{M. Hairer} and \textit{J. C. Mattingly}, Ann. Math. (2) 164, No. 3, 993--1032 (2006; Zbl 1130.37038) Full Text: DOI Euclid arXiv
Bartoszek, Wojciech Convergence of iterates of Lasota-Mackey-Tyrcha operators. (English) Zbl 0854.47017 Ann. Pol. Math. 63, No. 3, 281-292 (1996). MSC: 47B38 47B65 47G10 45D05 60J05 PDF BibTeX XML Cite \textit{W. Bartoszek}, Ann. Pol. Math. 63, No. 3, 281--292 (1996; Zbl 0854.47017) Full Text: DOI
Maslowski, Bohdan On probability distributions of solutions of semilinear stochastic evolution equations. (English) Zbl 0792.60058 Stochastics Stochastics Rep. 45, No. 1-2, 17-44 (1993). Reviewer: T.C.Gard (Athens / Georgia) MSC: 60H15 PDF BibTeX XML Cite \textit{B. Maslowski}, Stochastics Stochastics Rep. 45, No. 1--2, 17--44 (1993; Zbl 0792.60058) Full Text: DOI