Lukina, Olga Galois groups and Cantor actions. (English) Zbl 07313191 Trans. Am. Math. Soc. 374, No. 3, 1579-1621 (2021). MSC: 37B02 37B05 37P05 37C85 20E08 12F10 22A22 20E18 11R09 11R32 PDF BibTeX XML Cite \textit{O. Lukina}, Trans. Am. Math. Soc. 374, No. 3, 1579--1621 (2021; Zbl 07313191) Full Text: DOI
Bridy, Andrew; Doyle, John R.; Ghioca, Dragos; Hsia, Liang-Chung; Tucker, Thomas J. Finite index theorems for iterated Galois groups of unicritical polynomials. (English) Zbl 07288870 Trans. Am. Math. Soc. 374, No. 1, 733-752 (2021). MSC: 37P15 37P05 37P30 11G50 11R32 14G25 PDF BibTeX XML Cite \textit{A. Bridy} et al., Trans. Am. Math. Soc. 374, No. 1, 733--752 (2021; Zbl 07288870) Full Text: DOI
Ferraguti, Andrea; Micheli, Giacomo An equivariant isomorphism theorem for \(\bmod\, \mathfrak{p}\) reductions of arboreal Galois representations. (English) Zbl 07301832 Trans. Am. Math. Soc. 373, No. 12, 8525-8542 (2020). MSC: 37P05 37P15 11G05 20E08 PDF BibTeX XML Cite \textit{A. Ferraguti} and \textit{G. Micheli}, Trans. Am. Math. Soc. 373, No. 12, 8525--8542 (2020; Zbl 07301832) Full Text: DOI
Andrews, Jesse; Petsche, Clayton Abelian extensions in dynamical Galois theory. (English) Zbl 07248678 Algebra Number Theory 14, No. 7, 1981-1999 (2020). MSC: 11R32 11G50 11R18 37P30 PDF BibTeX XML Cite \textit{J. Andrews} and \textit{C. Petsche}, Algebra Number Theory 14, No. 7, 1981--1999 (2020; Zbl 07248678) Full Text: DOI
Looper, Nicole R. The \(ABC\)-conjecture implies uniform bounds on dynamical Zsigmondy sets. (English) Zbl 07215111 Trans. Am. Math. Soc. 373, No. 7, 4627-4647 (2020). Reviewer: Riccardo Pengo (Lyon) MSC: 11G50 11R32 37P15 14G05 37P45 PDF BibTeX XML Cite \textit{N. R. Looper}, Trans. Am. Math. Soc. 373, No. 7, 4627--4647 (2020; Zbl 07215111) Full Text: DOI
Juul, Jamie; Krieger, Holly; Looper, Nicole; Manes, Michelle; Thompson, Bianca; Walton, Laura Arboreal representations for rational maps with few critical points. (English) Zbl 1436.11135 Balakrishnan, Jennifer S. (ed.) et al., Research directions in number theory. Women in numbers IV. Proceedings of the women in numbers, WIN4 workshop. Banff International Research Station, Banff, Alberta, Canada, August 14–18, 2017. Cham: Springer. Assoc. Women Math. Ser. 19, 133-151 (2019). MSC: 11R32 37P05 11F80 37P25 11R45 PDF BibTeX XML Cite \textit{J. Juul} et al., Assoc. Women Math. Ser. 19, 133--151 (2019; Zbl 1436.11135) Full Text: DOI
Liang, Ke; Rouse, Jeremy Density of odd order reductions for elliptic curves with a rational point of order 2. (English) Zbl 07099946 Int. J. Number Theory 15, No. 8, 1547-1563 (2019). MSC: 11G05 11F80 PDF BibTeX XML Cite \textit{K. Liang} and \textit{J. Rouse}, Int. J. Number Theory 15, No. 8, 1547--1563 (2019; Zbl 07099946) Full Text: DOI
Anderson, Jacqueline; Hamblen, Spencer; Poonen, Bjorn; Walton, Laura Local arboreal representations. (English) Zbl 1452.11140 Int. Math. Res. Not. 2018, No. 19, 5974-5994 (2018). Reviewer: Kevin Keating (Gainesville) MSC: 11S82 11S15 11S20 PDF BibTeX XML Cite \textit{J. Anderson} et al., Int. Math. Res. Not. 2018, No. 19, 5974--5994 (2018; Zbl 1452.11140) Full Text: DOI arXiv
Hindes, Wade Classifying Galois groups of small iterates via rational points. (English) Zbl 1441.11281 Int. J. Number Theory 14, No. 5, 1403-1426 (2018). Reviewer: Władysław Narkiewicz (Wrocław) MSC: 11R32 11G30 14G05 37P15 PDF BibTeX XML Cite \textit{W. Hindes}, Int. J. Number Theory 14, No. 5, 1403--1426 (2018; Zbl 1441.11281) Full Text: DOI arXiv
Ferraguti, Andrea The set of stable primes for polynomial sequences with large Galois group. (English) Zbl 1442.11150 Proc. Am. Math. Soc. 146, No. 7, 2773-2784 (2018). MSC: 11R32 11R45 20E08 PDF BibTeX XML Cite \textit{A. Ferraguti}, Proc. Am. Math. Soc. 146, No. 7, 2773--2784 (2018; Zbl 1442.11150) Full Text: DOI arXiv
Swaminathan, Ashvin A. On arboreal Galois representations of rational functions. (English) Zbl 1387.11081 J. Algebra 448, 104-126 (2016). Reviewer: Nuria Vila (Barcelona) MSC: 11R32 12F10 37P15 11F80 PDF BibTeX XML Cite \textit{A. A. Swaminathan}, J. Algebra 448, 104--126 (2016; Zbl 1387.11081) Full Text: DOI
Jones, Rafe; Manes, Michelle Galois theory of quadratic rational functions. (English) Zbl 1316.11104 Comment. Math. Helv. 89, No. 1, 173-213 (2014). Reviewer: John D. Dixon (Ottawa) MSC: 11R32 37P15 PDF BibTeX XML Cite \textit{R. Jones} and \textit{M. Manes}, Comment. Math. Helv. 89, No. 1, 173--213 (2014; Zbl 1316.11104) Full Text: DOI arXiv
Boston, Nigel; Jones, Rafe The image of an arboreal Galois representation. (English) Zbl 1167.11011 Pure Appl. Math. Q. 5, No. 1, 213-225 (2009). Reviewer: Władysław Narkiewicz (Wrocław) MSC: 11C08 11R32 PDF BibTeX XML Cite \textit{N. Boston} and \textit{R. Jones}, Pure Appl. Math. Q. 5, No. 1, 213--225 (2009; Zbl 1167.11011) Full Text: DOI