×

Variational multiscale element free Galerkin (VMEFG) and local discontinuous Galerkin (LDG) methods for solving two-dimensional Brusselator reaction-diffusion system with and without cross-diffusion. (English) Zbl 1425.65108

Summary: The finite element method (FEM) is one of the basic methods for solving deterministic and stochastic partial differential equations. This method is proposed in the 19 decade and after years several modifications for this well-known technique such as mortal FEM, discontinuous Galerkin FEM, extended FEM, least squares FEM, spectral FEM, mixed FEM, immersed FEM, adaptive FEM, etc. have been proposed. Also, for improving the accuracy and for considering complex domain, shape functions of the moving least squares approximation have been replaced with the traditional shape function of the finite element technique. The name of this improved method is element free Galerkin (EFG) method which is classified in the category of meshless methods. The EFG method has been applied for solving many problems in engineering. In the current paper, we select two numerical procedures that are extracted from FEM. The discontinuous Galerkin approach is a useful technique for solving problems that their exact solutions have discontinuity. It should be noted that many enriched ideas have been explained for improving accuracy of EFG method. In the current paper, the local discontinuous Galerkin and variational multiscale EFG methods are applied for obtaining numerical solution of two-dimensional Brusselator system with and without cross-diffusion. The Brusselator system is a theoretical model for a type of autocatalytic reaction. Up to best of authors’ knowledge, the accuracy of the obtained numerical solutions using local discontinuous Galerkin method is very related to the used time-discrete scheme. Therefore, fourth-order exponential time differencing method has been employed for discretizing the time variable. Also, to achieve a full discretization scheme, the local discontinuous Galerkin finite element method is used. Moreover, several test problems are given that show the acceptable accuracy and efficiency of the proposed schemes.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
35K58 Semilinear parabolic equations
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs

Software:

FESTUNG
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Li, B. Q., Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer (2006), Springer-Verlag London Limited · Zbl 1110.76001
[2] Reed, W. H.; Hill, T. R., Triangular Mesh Methods for the Neutron Transport Equation, Los Alamos Scientific Laboratory Report LA-UR-73-479 (1973), Los Alamos: Los Alamos NM
[3] Cockburn, B., Devising discontinuous Galerkin methods for nonlinear hyperbolic conservation laws, J. Comput. Appl. Math., 128, 187-204 (2001) · Zbl 0974.65092
[4] Demkowicz, L.; Gopalakrishnan, J.; Niemi, A. H., A class of discontinuous Petrov-Galerkin methods. Part III: Adaptivity, Appl. Numer. Math., 62, 396-427 (2012) · Zbl 1316.76047
[5] Ellis, T.; Demkowicz, L.; Chan, J., Locally conservative discontinuous Petrov-Galerkin finite elements for fluid problems, Comput. Math. Appl., 68, 1530-1549 (2014) · Zbl 1364.76086
[6] Cockburn, B.; Shu, C. W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II, General framework, Math. Comput., 52, 411-435 (1989) · Zbl 0662.65083
[7] Hu, C.; Shu, C. W., A discontinuous Galerkin finite element method for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21, 2, 666-690 (1998) · Zbl 0946.65090
[8] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 1749-1779 (2002) · Zbl 1008.65080
[9] Cockburn, B.; Shu, C. W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 2440-2463 (1998) · Zbl 0927.65118
[10] Cockburn, B.; Shu, C. W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 199-224 (1998) · Zbl 0920.65059
[11] Cockburn, B.; Hou, S.; Shu, C. W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws, IV, The multidimensional case, Math. Comp., 54, 545-581 (1990) · Zbl 0695.65066
[12] Cheng, Y.; Shu, C. W., A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, J. Comput. Phys., 223, 398-415 (2007) · Zbl 1124.65090
[13] Liang, X.; Khaliq, A. Q.M.; Xing, Y., Fourth order exponential time differencing method with Local discontinuous Galerkin approximation for coupled nonlinear Schrödinger equations, Commun. Comput. Phys., 17, 510-541 (2015) · Zbl 1388.65086
[14] Cui, X.; Li, B. Q., A discontinuous finite-element formulation for multidimensional radiative transfer in absorbing, emitting, and scattering media, Numer. Heat Transfer B, 46, 5, 399-428 (2004)
[15] Ai, X.; Li, B. Q., Numerical simulation of thermal wave propagation during laser processing of thin films, J. Electron. Mater., 34, 583-591 (2005)
[16] Badia, S.; Hierro, A., On discrete maximum principles for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg., 286, 107-122 (2015) · Zbl 1423.76205
[17] Giani, S., hp-adaptive composite discontinuous Galerkin methods for elliptic eigenvalue problems on complicated domains, Appl. Math. Comput. (2015), in press. http://dx.doi.org/10.1016/j.amc.2015.01.031 · Zbl 1410.65436
[18] Chou, C. S.; Shu, C. W.; Xing, Y., Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media, J. Comput. Phys., 272, 88-107 (2014) · Zbl 1349.65446
[19] Frank, F.; Reuter, B.; Aizinger, V.; Knabner, P., FESTUNG: A MATLAB/GNU Octave toolbox for the discontinuous Galerkin method, Part I: Diffusion operator, Comput. Math. Appl., 70, 11-46 (2015) · Zbl 1443.65202
[20] Shu, C. W., Discontinuous Galerkin method for time dependent problems: Survey and recent developments, (Feng, X.; Karakashian, O.; Xing, Y., Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations (2012 John H. Barrett Memorial Lectures). Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations (2012 John H. Barrett Memorial Lectures), The IMA Volumes in Mathematics and its Applications, vol. 157 (2014), Springer: Springer Switzerland), 25-62 · Zbl 1282.65122
[21] Wang, H.; Shu, C. W.; Zhang, Q., Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection-diffusion problems, SIAM J. Numer. Anal., 53, 1, 206-227 (2015) · Zbl 1327.65179
[22] Zhang, X.; Shu, C. W., On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys., 229, 23, 8918-8934 (2010) · Zbl 1282.76128
[23] Belytschko, T.; Lu, Y. Y.; Gu, L., Element free Galerkin methods, Internat. J. Numer. Methods Engrg., 37, 229-256 (1994) · Zbl 0796.73077
[24] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: An overview and recent developments, Comput. Methods Appl. Mech. Engrg., 139, 3-47 (1996) · Zbl 0891.73075
[25] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math. Comp., 37, 141-158 (1981) · Zbl 0469.41005
[26] Cheng, Y.; Bai, F. N.; Peng, M. J., A novel interpolating element free Galerkin (IEFG) method for two-dimensional elastoplasticity, Appl. Math. Model., 38, 5187-5197 (2014) · Zbl 1449.74196
[27] Cheng, Y.; Li, J., A meshless method with complex variables for elasticity, Acta Phys. Sin., 54, 4463-4471 (2005) · Zbl 1202.74163
[28] Cheng, Y.; Peng, M., Boundary element free method for elastodynamics, Sci. China G, 48, 641-657 (2005)
[29] Zhang, Z.; Liew, K. M.; Cheng, Y.; Lee, Y. Y., Analyzing 2D fracture problems with the improved element free Galerkin method, Eng. Anal. Bound. Elem., 32, 241-250 (2008) · Zbl 1244.74240
[30] Zhang, L. W.; Deng, Y. J.; Liew, K. M.; Cheng, Y. M., The improved complex variable element free Galerkin method for two-dimensional Schrödinger equation, Comput. Math. Appl., 68, 10, 1093-1106 (2014) · Zbl 1367.35141
[31] Zhang, L. W.; Deng, Y. J.; Liew, K. M., An improved element-free Galerkin method for numerical modeling of the biological population problems, Eng. Anal. Bound. Elem., 40, 181-188 (2014) · Zbl 1297.65123
[32] Zhang, Z.; Hao, S. Y.; Liew, K. M.; Cheng, Y. M., The improved element-free Galerkin method for two-dimensional elastodynamics problems, Eng. Anal. Bound. Elem., 37, 1576-1584 (2013) · Zbl 1287.74055
[33] Krongauz, Y.; Belytschko, T., EFG approximation with discontinuous derivatives, Internat. J. Numer. Methods Engrg., 41, 1215-1233 (1998) · Zbl 0906.73063
[34] Chung, H. J.; Belytschko, T., An error estimate in the EFG method, Comput. Mech., 21, 91-100 (1998) · Zbl 0910.73060
[35] Ren, H.; Cheng, Y., The interpolating element-free Galerkin (IEFG) method for two-dimensional potential problems, Eng. Anal. Bound. Elem., 36, 873-880 (2012) · Zbl 1352.65539
[36] Lee, C. K.; Zhou, C. E., On error estimation and adaptive refinement for element free Galerkin method Part I: stress recovery and a posteriori error estimation, Comput. Struct., 82, 413-428 (2004)
[37] Lee, C. K.; Zhou, C. E., On error estimation and adaptive refinement for element free Galerkin method Part II: adaptive refinement, Comput. Struct., 82, 429-443 (2004)
[38] Zhang, Z.; Liew, K. M.; Cheng, Y., Coupling of the improved element-free Galerkin and boundary element methods for two-dimensional elasticity problems, Eng. Anal. Bound. Elem., 32, 100-107 (2008) · Zbl 1244.74204
[39] Ponthot, J. P.; Belytschko, T., Arbitrary Lagrangian-Eulerian formulation for element free Galerkin method, Comput. Methods Appl. Mech. Engrg., 152, 19-46 (1998) · Zbl 0961.74079
[40] Gu, L., Moving Kriging interpolation and element-free Galerkin method, Internat. J. Numer. Methods Engrg., 56, 1-11 (2003) · Zbl 1062.74652
[41] Dai, K. Y.; Liu, G. R.; Lim, K. M.; Gu, Y. T., Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods, Comput. Mech., 32, 60-70 (2003) · Zbl 1035.74059
[42] Dehghan, M.; Salehi, R., A meshless local Petrov-Galerkin method for the time-dependent Maxwell equations, J. Comput. Appl. Math., 268, 93-110 (2014) · Zbl 1293.65128
[43] Taleei, A.; Dehghan, M., Direct meshless local Petrov-Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic, Comput. Methods Appl. Mech. Eng., 278, 479-498 (2014) · Zbl 1423.82009
[44] Tongsuk, P.; Kanok-Nukulchai, W., Further investigation of element free Galerkin method using moving Kriging interpolation, Int. J. Comput. Methods, 01, 345-365 (2004) · Zbl 1179.74182
[45] Bui, T. Q.; Nguyen, M. N., A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates, Comput. Struct., 89, 380-394 (2011)
[46] Bui, T. Q.; Zhang, C., moving Kriging interpolation-based meshfree method for dynamic analysis of structures, Proc. Appl. Math. Mech., 11, 197-198 (2011)
[47] Bui, T. Q.; Nguyen, M. N.; Zhang, C., A moving Kriging interpolation-based element-free Galerkin method for structural dynamic analysis, Comput. Methods Appl. Mech. Engin., 200, 1354-1366 (2011) · Zbl 1228.74110
[48] Chen, L.; Liew, K. M., A local Petrov-Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems, Comput. Mech., 47, 455-467 (2011) · Zbl 1241.80005
[49] Li, H.; Wang, Q. X.; Lam, K. Y., Development of a novel meshless Local Kriging (LoKriging) method for structural dynamic analysis, Comput. Methods Appl. Mech. Engrg., 193, 2599-2619 (2004) · Zbl 1067.74598
[50] Gu, Y. T.; Wang, Q. X.; Lam, K. Y., A meshless local Kriging method for large deformation analyses, Comput. Methods Appl. Mech. Engrg., 196, 1673-1684 (2007) · Zbl 1173.74471
[51] Gu, Y. T.; Zhuang, P.; Liu, F., An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation, CMES Comput. Model. Eng. Sci., 56, 303-334 (2010) · Zbl 1231.65178
[52] Gu, Y. T.; Liu, G. R., A local point interpolation method for static and dynamic analysis of thin beams, Comput. Methods Appl. Mech. Engrg., 190, 5515-5528 (2001) · Zbl 1059.74060
[53] Gu, Y. T.; Liu, G. R., A boundary point interpolation method for stress analysis of solids, Comput. Mech., 28, 47-54 (2002) · Zbl 1115.74380
[54] Gu, Y. T.; Wang, W.; Zhang, L. C.; Feng, X. Q., An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields, Eng. Fract. Mech., 78, 175-190 (2011)
[55] Lam, K. Y.; Wang, Q. X.; Li, H., A novel meshless approach — Local Kriging (LoKriging) method with two-dimensional structural analysis, Comput. Mech., 33, 235-244 (2004) · Zbl 1067.74074
[56] Zhu, P.; Zhang, L. W.; Liew, K. M., Geometrically nonlinear thermo-mechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation, Compos. Struct., 107, 298-314 (2014)
[57] Dai, B. D.; Cheng, J.; Zheng, B. J., Numerical solution of transient heat conduction problems using improved meshless local Petrov-Galerkin method, Appl. Math. Comput., 219, 10044-10052 (2013) · Zbl 1307.80008
[58] Dai, B. D.; Cheng, J.; Zheng, B. J., A moving Kriging interpolation-based meshless local Petrov-Galerkin method for elastodynamic analysis, Int. J. Appl. Mech., 5, 1, 1350011-1350021 (2013)
[59] Li, X. G.; Dai, B. D.; Wang, L. H., A moving Kriging interpolation-based boundary node method for two-dimensional potential problems, Chin. Phys. B, 19, 12, 120202-120207 (2010)
[60] Zheng, B.; Dai, B. D., A meshless local moving Kriging method for two-dimensional solids, Appl. Math. Comput., 218, 563-573 (2011) · Zbl 1275.74033
[61] Dehghan, M.; Ghesmati, A., Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM), Comput. Phys. Commun., 181, 772-786 (2010) · Zbl 1205.65267
[62] Zhang, L.; Ouyang, J.; Wang, X.; Zhang, X., Variational multiscale element-free Galerkin method for 2D Burgers equation, J. Comput. Phys., 229, 7147-7161 (2010) · Zbl 1425.35167
[63] Zhang, L.; Ouyang, J.; Zhang, X.; Zhang, W., On a multiscale element free Galerkin method for the Stokes problem, Appl. Math. Comput., 203, 745-753 (2008) · Zbl 1262.76026
[64] Zhang, L.; Ouyang, J.; Jiang, T.; Ruan, C., Variational multiscale element free Galerkin method for the water wave problems, J. Comput. Phys., 230, 5045-5060 (2011) · Zbl 1416.76134
[65] Zhang, L.; Ouyang, J.; Zhang, X., The variational multiscale element free Galerkin method for MHD flows at high Hartmann numbers, Comput. Phys. Commun., 184, 1106-1118 (2013) · Zbl 1302.76110
[66] Dehghan, M.; Shokri, A., A numerical method for two-dimensional Schrodinger equation using collocation and radial basis functions, Comput. Math. Appl., 54, 136-146 (2007) · Zbl 1126.65092
[67] Dehghan, M.; Mirzaei, D., The meshless local Petrov-Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrodinger equation, Eng. Anal. Bound. Elem., 32, 747-756 (2008) · Zbl 1244.65139
[68] Dehghan, M.; Salehi, R., The solitary wave solution of the two-dimensional regularized long-wave equation in fluids and plasmas, Comput. Phys. Commun., 182, 2540-2549 (2011) · Zbl 1263.76047
[69] Dehghan, M.; Tatari, M., Use of radial basis functions for solving the second-order equation with nonlocal boundary conditions, Numer. Methods Partial Differential Equations, 24, 924-938 (2008) · Zbl 1143.65080
[70] Lin, Z.; Ruiz-Baier, R.; Tian, C., Finite volume element approximation of an inhomogeneous Brusselator model with cross-diffusion, J. Comput. Phys., 256, 806-823 (2014) · Zbl 1349.80036
[71] Lefever, R., Dissipative structures in chemical systems, J. Chem. Phys., 49, 4977-4978 (1968)
[72] Prigogine, I.; Lefever, R., Symmetries breaking instabilities in dissipative systems II, J. Phys. Chem., 48, 1695-1700 (1968)
[73] Herschkowitz-Kaufman, M.; Nicolis, N., Localized spatial structures and non-linear chemical waves in dissipative systems, J. Chem. Phys., 56, 1890-1895 (1972)
[74] Lavenda, B.; Nicolis, G.; Herschkowitz-Kaufman, M., Chemical instabilities and relaxation oscillations, J. Theoret. Biol., 32, 283-292 (1971)
[75] Lefever, R.; Nicolis, G., Chemical instabilities and sustained oscillations, J. Theoret. Biol., 30, 267-284 (1971) · Zbl 1170.92344
[76] Mohammadi, M.; Mokhtari, R.; Schaback, R., A meshless method for solving the 2D Brusselator reaction-diffusion system, CMES Comput. Model. Eng. Sci., 101, 113-138 (2014) · Zbl 1357.65152
[77] Nicolis, G.; Prigogine, I., Self-organization in Non-equilibrium Systems (1977), Wiley Interscience: Wiley Interscience New York · Zbl 0363.93005
[78] Twizell, E. H.; Gumel, A. B.; Cao, Q., A second-order scheme for the Brusselator ” reaction-diffusion system, J. Math. Chem., 26, 297-316 (1999) · Zbl 1016.92049
[79] Islam, S. U.; Ali, A.; Haq, S., A computational modeling of the behavior of the two-dimensional reaction-diffusion Brusselator system, Appl. Math. Model., 34, 3896-3909 (2010) · Zbl 1201.65185
[80] Dehghan, M., Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math. Comput. Simul., 71, 16-30 (2006) · Zbl 1089.65085
[81] Mittal, R. C.; Jiwari, R., Numerical solution of two-dimensional reaction-diffusion Brusselator system, Appl. Math. Comput., 217, 5404-5415 (2011) · Zbl 1209.65102
[82] Dehghan, M.; Nikpour, A., Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method, Appl. Math. Model., 37, 8578-8599 (2013) · Zbl 1426.65113
[83] Adomian, G., The diffusion-Brusselator equation, Comput. Math. Appl., 29, 1-3 (1995) · Zbl 0827.35056
[84] Ang, W. T., The two-dimensional reaction-diffusion Brusselator system: a dual-reciprocity boundary element solution, Eng. Anal. Bound. Elem., 27, 897-903 (2003) · Zbl 1060.76599
[85] Bhatt, H. P.; Khaliq, A. Q.M., The locally extrapolated exponential time differencing LOD scheme for multidimensional reaction-diffusion systems, J. Comput. Appl. Math., 285, 256-278 (2015) · Zbl 1329.65205
[86] Wazwaz, A. M., Partial Differential Equations and Solitary Waves Theory (2009), Higher Education Press, Beijin, Springer-Verlag, Berlin, Heidelberg · Zbl 1175.35001
[87] Cox, S. M.; Matthews, P. C., Exponential time differencing for stiff systems, J. Comput. Phys., 176, 430-455 (2002) · Zbl 1005.65069
[88] Kassam, A. K.; Trefethen, L. N., Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput., 26, 1214-1233 (2005) · Zbl 1077.65105
[89] Khaliq, A. Q.M.; Martin-Vaquero, J.; Wade, B. A.; Yousuf, M., Smoothing schemes for reaction-diffusion systems with non-smooth data, J. Comput. Appl. Math., 223, 374-386 (2009) · Zbl 1155.65062
[90] Xia, Y.; Xu, Y.; Shu, C. W., Efficient time discretization for local discontinuous Galerkin methods, Discrete Contin. Dyn. Syst. Ser. B, 8, 677-693 (2007) · Zbl 1141.65076
[91] Dehghan, M.; Mohebbi, A., High order implicit collocation method for the solution of two-dimensional linear hyperbolic equation, Numer. Methods Partial Differential Equations, 25, 232-243 (2009) · Zbl 1156.65087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.