×

Parallel adaptive mesh refinement method based on WENO finite difference scheme for the simulation of multi-dimensional detonation. (English) Zbl 1349.76159

Summary: For numerical simulation of detonation, computational cost using uniform meshes is large due to the vast separation in both time and space scales. Adaptive mesh refinement (AMR) is advantageous for problems with vastly different scales. This paper aims to propose an AMR method with high order accuracy for numerical investigation of multi-dimensional detonation. A well-designed AMR method based on finite difference weighted essentially non-oscillatory (WENO) scheme, named as AMR&WENO is proposed. A new cell-based data structure is used to organize the adaptive meshes. The new data structure makes it possible for cells to communicate with each other quickly and easily. In order to develop an AMR method with high order accuracy, high order prolongations in both space and time are utilized in the data prolongation procedure. Based on the message passing interface (MPI) platform, we have developed a workload balancing parallel AMR&WENO code using the Hilbert space-filling curve algorithm. Our numerical experiments with detonation simulations indicate that the AMR&WENO is accurate and has a high resolution. Moreover, we evaluate and compare the performance of the uniform mesh WENO scheme and the parallel AMR&WENO method. The comparison results provide us further insight into the high performance of the parallel AMR&WENO method.

MSC:

76L05 Shock waves and blast waves in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Berger, M. J.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 3, 484-512 (1984) · Zbl 0536.65071
[2] Berger, M. J.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 1, 64-84 (1989) · Zbl 0665.76070
[3] Deiterding, R., Parallel adaptive simulation of multi-dimensional detonation structures (2003), University of Cottbus, Ph.D. Thesis
[4] Loth, E.; Sivier, S.; Baum, J., Adaptive unstructured finite element method for two-dimensional detonation simulations, Shock Waves, 8, 1, 47-53 (1998) · Zbl 0902.76061
[5] Ji, H.; Lien, F. S.; Yee, E., A new adaptive mesh refinement data structure with an application to detonation, J. Comput. Phys., 229, 23, 8981-8993 (2010) · Zbl 1207.80023
[6] Benkiewicz, K.; Hayashi, K., Two-dimensional numerical simulations of multi-headed detonations in oxygen-aluminum mixtures using an adaptive mesh refinement, Shock Waves, 12, 5, 385-402 (2003) · Zbl 1024.76517
[7] Wilkening, H.; Huld, T., An adaptive 3-D CFD solver for modeling explosions on large industrial environmental scales, Combust. Sci. Technol., 149, 1-6, 361-387 (1999)
[8] Ziegler, J. L.; Deiterding, R.; Shepherd, J. E.; Pullin, D. I., An adaptive high-order hybrid scheme for compressive, viscous flows with detailed chemistry, J. Comput. Phys., 230, 20, 7598-7630 (2011) · Zbl 1433.76144
[9] Ji, H.; Lien, F. S.; Yee, E., Numerical simulation of detonation using an adaptive Cartesian cut-cell method combined with a cell-merging technique, Comput. Fluids, 39, 6, 1041-1057 (2010) · Zbl 1242.76168
[10] Khokhlov, A. M.; Oran, E. S., Numerical simulation of detonation initiation in a flame brush: the role of hot spots, Combust. Flame, 119, 4, 400-416 (1999)
[11] Dumbser, M.; Hidalgo, A.; Zanotti, O., High order space time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 268, 359-387 (2014) · Zbl 1295.65088
[12] Dou, H. S.; Tsai, H. M.; Khoo, B. C., Simulations of detonation wave propagation in rectangular ducts using a three-dimensional WENO scheme, Combust. Flame, 154, 4, 644-659 (2008)
[13] Wang, C.; Shu, C.-W.; Han, W.; Ning, J. G., High resolution WENO simulation of 3D detonation waves, Combust. Flame, 160, 2, 447-462 (2013)
[14] Hu, X. Y.; Khoo, B. C.; Zhang, D. L.; Jiang, Z. L., The cellular structure of a two-dimensional \(H_2/O_2/Ar\) detonation wave, Combust. Theory Model., 8, 2, 339-359 (2004)
[15] Li, S. T.; Hyman, J. M., Adaptive mesh refinement for finite difference WENO schemes (2003), Los Alamos National Laboratory, Technical Report LA-UR-03-8927
[16] Baeza, A.; Mulet, P., Adaptive mesh refinement techniques for high-order shock capturing schemes for multi-dimensional hydrodynamic simulations, Int. J. Numer. Methods Fluids, 52, 4, 455-471 (2006) · Zbl 1370.76116
[17] Shen, C.; Qiu, J. M.; Christlieb, A., Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations, J. Comput. Phys., 30, 10, 3780-3802 (2011) · Zbl 1218.65085
[18] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[19] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 2, 439-471 (1988) · Zbl 0653.65072
[20] Khokhlov, A. M., Fully threaded tree algorithms for adaptive mesh fluid dynamics simulations, J. Comput. Phys., 143, 2, 519-543 (1998) · Zbl 0934.76057
[21] Sebastian, K.; Shu, C.-W., Multidomain WENO finite difference method with interpolation at subdomain interfaces, J. Sci. Comput., 19, 1-3, 405-438 (2003) · Zbl 1081.76577
[22] Steensland, J.; Chandra, S.; Parashar, M., An application centric characterization of domain-based SFC partitioners for parallel SAMR, IEEE Trans. Parallel Distrib. Syst., 13, 12, 1275-1289 (2002)
[23] Henshaw, W. D.; Schwendeman, D. W., Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement, J. Comput. Phys., 227, 16, 7469-7502 (2008) · Zbl 1213.76138
[24] Williams, D. N.; Bauwens, L.; Oran, E. S., A numerical study of the mechanisms of self-reignition in low-overdrive detonations, Phys. Astron., 6, 2, 93-110 (1996)
[25] Bourlioux, A.; Majda, A. J.; Roytburd, V., Theoretical and numerical structure for unstable one-dimensional detonations, SIAM J. Appl. Math., 51, 2, 303-343 (1991) · Zbl 0731.76076
[26] Fickett, W.; Wood, W. W., Flow calculations for pulsating one-dimensional detonations, Phys. Fluids, 9, 5, 903-916 (1966)
[27] Hwang, P.; Fedkiw, R. P.; Merriman, B.; Aslam, T. D.; Karagozian, A. R.; Osher, S. J., Numerical resolution of pulsating detonation waves, Combust. Theory Model., 4, 3, 217-240 (2000) · Zbl 0987.76066
[28] Sharpe, G. J., Transverse waves in numerical simulations of cellular detonations, J. Fluid Mech., 447, 31-51 (2001) · Zbl 1032.76080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.