×

Dual-porosity poroviscoelasticity and quantitative hydromechanical characterization of the brain tissue with experimental hydrocephalus data. (English) Zbl 1343.92111

Summary: Hydromechanical brain models often involve constitutive relations which must account for soft tissue deformation and creep, together with the interstitial fluid movement and exchange through capillaries. The interaction of rather unknown mechanisms which produce, absorb, and circulate the cerebrospinal fluid within the central nervous system can further add to their complexity. Once proper models for these phenomena or processes are selected, estimation of the associated parameters could be even more challenging.
This paper presents the results of a consistent, coupled poroviscoelastic modeling and characterization of the brain tissue as a dual-porosity system. The model draws from Biot’s theory of poroviscoelasticity, and adopts the generalized Kelvin’s rheological description of the viscoelastic tissue behavior. While the interstitial space serves as the primary porosity through which the bulk flow of the interstitial fluid occurs, a secondary porosity network comprising the capillaries and venous system allows for its partial absorption into the blood. The correspondence principle is used in deriving a time-dependent analytical solution to the proposed model. It allows for identical poroelastic formulation of the original poroviscoelastic problem in the Laplace transform space.
Hydrocephalus generally refers to a class of medical conditions which share the ventricles enlargement as a common feature. A set of published data from induced hydrocephalus and follow-up perfusion of cats’ brains is used for quantitative characterization of the proposed model. A selected portion of these data including the ventricular volume and rate of fluid absorption from the perfused brain, together with the forward model solution, is utilized via an inverse problem technique to find proper estimations of the model parameters. Results show significant improvement in model predictions of the experimental data.
The convoluted and coupled solution results are presented through the time-dependent plots of the ventricular volume undergoing the perfusion experiment. The plots demonstrate the intricate interplay of viscous and poroelastic diffusive time scales, and their competition in reaching the steady state response of the system.

MSC:

92C35 Physiological flow
76Z05 Physiological flows
92C20 Neural biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abousleiman, Y.; Cheng, A. H.D.; Jiang, C.; Roegiers, J. C., A micromechanically consisstent poroviscoelasticity theory for rock mechanics applications, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 30, 1177-1180 (1993)
[2] Abousleiman, Y.; Cheng, A. H.D.; Jiang, C.; Roegiers, J. C., Poroviscoelastic analysis of borehole and cylinder problems, Acta Mech., 119, 199-219 (1996) · Zbl 0881.73108
[3] Abousleiman, Y.; Nguyen, V., Poromechanics response of inclined wellbore geometry in fractured porous media, J. Eng. Mech. ASCE, 131, 1170-1183 (2005)
[4] Alfasi, A. M.; Shulyakov, A. V.; Del Bigio, M. R., Intracranial biomechanics following cortical contusion in live rats: laboratory investigation, J. Neurosurg., 119, 1255-1262 (2013)
[5] Berryman, J. G., Extension of poroelastic analysis to double-porosity materials: new technique in microgeomechanics, J. Eng. Mech., 128, 840-847 (2002)
[6] Beskos, D. E.; Aifantis, E. C., On the theory of consolidation with double porosity—II, Int. J. Eng. Sci., 24, 1697-1716 (1986) · Zbl 0601.73109
[7] Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phy., 12, 155-164 (1941) · JFM 67.0837.01
[8] Biot, M. A., General solutions of the equations of elasticity and consolidation for a porous material, J. Appl. Mech., 78, 91-96 (1956) · Zbl 0074.19101
[9] Biot, M. A., Theory of deformation of a porous viscoelastic anisotropic solid, J. Appl. Phys., 27, 459-467 (1956)
[10] Biot, M. A., Nonlinear and semilinear rheology of porous solids, J. Geophys. Res., 78, 4924-4937 (1973)
[11] Bloch, O.; Auguste, K. I.; Manley, G. T.; Verkman, A. S., Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice, Nat. J. Cereb. Blood Flow Metabol., 26, 1527-1537 (2006)
[12] Børgesen, S. E.; Albeck, M. J.; Gjerris, F.; Czosnyka, M.; Laniewski, P., Computerized infusion test compared to steady pressure constant infusion test in measurement of resistance to CSF outflow, Acta Neurochirur., 119, 12-16 (1992)
[13] Bouzerar, R.; Tekaya, I.; Bouzerar, R.; Balédent, O., Dynamics of hydrocephalus: a physical approach, J. Biol. Phys., 38, 251-266 (2012)
[14] Cheng, S.; Bilston, L. E., Unconfined compression of white matter, J. Biomech., 40, 117-124 (2007)
[15] Cheng, A. H.D.; Sidauruk, P.; Abousleiman, Y. N., Approximate inversion of Laplace transform, Math. J., 4, 76-81 (1994)
[16] Chou, D.; Vardakis, J. C.; Ventikos, Y., Multiscale modelling for cerebrospinal fluid dynamics: multicompartmental poroelacticity and the role of AQP4, J. Biosci. Med., 2, 1-9 (2014)
[17] Coussy, O., Mechanics of porous continiua (1995), Wiley: Wiley NewYork · Zbl 0838.73001
[18] Cowin, S. C.; Gailani, G.; Benalla, M., Hierarchical poroelasticity: movement of interstitial fluid between porosity levels in bones, Philos. Trans. R. Soc. A, 367, 1902, 3401-3444 (2009) · Zbl 1185.74057
[19] Del Bigio, M. R.D.; Bruni, J., Cerebral water content in silicone oil-induced hydrocephalic rabbits, Pediatric Neurosurg., 13, 72-77 (1987)
[20] Del Bigio, M. R., Neuropathological changes caused by hydrocephalus, Acta Neuropathol., 85, 573-585 (1993)
[21] Deo-Narine, V.; Gomez, D. G.; Vullo, T.; Manzo, R. P.; Zimmerman, R. D.; Deck, M. D.F.; Cahill, P. T., Direct in-vivo observation of trans-ventricular absorption in the hydrocephalic dog using magnetic resonance imaging, Investig. Radiol., 29, 287-293 (1994)
[22] Edvinson, L.; West, K. A., Relation between intracranial pressure and ventricular size at various stages of experimental hydrocephalus, Acta Neurol. Scand., 47, 451-457 (2009)
[23] Eskandari, R.; Abdullah, O.; Mason, C.; Lloyd, K. E.; Oeschle, A. N.; McAllister, J. P., Differential vulnerability of white matter structures to experimental infantile hydrocephalus detected by diffusion tensor imaging, Child׳s Nerv. Syst., 30, 1651-1661 (2014)
[24] Fishman, R. A.; Greer, M., Experimental obstructive hydrocephalus: changes in the cerebrum, Arch. Neurol., 8, 156-161 (1963)
[25] Franceschini, G.; Bigoni, D.; Regitnig, P.; Holzapfel, G. A., Brain tissue deforms similarly to filled elastometers and follows consolidation theory, J. Mech. Phys. Solids., 54, 2592-2620 (2006) · Zbl 1162.74303
[26] Germanovich, L. N.; Ozan, C.; Mukundan, S., A mechanism of subdural hematoma following ventricular decompression, (Ling, H. I.; Smyth, A.; Betti, R. (2009), DEStech Publications: DEStech Publications PA, USA), 108-115
[27] Greitz, D., Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography, Acta Radiol. Suppl., 386, 1-23 (1992)
[28] Greitz, D.; Hannerz, J.; Rähn, T.; Bolander, H.; Ericsson, A., MR imaging of cerebrospinal fluid dynamics in health and disease on the vascular pathogenesis of communicating hydrocephalus and benign intracranial hypertension, Acta Radiol., 35, 204-211 (1994)
[29] Grzybowski, D. M.; Holman, D. W.; Katz, S. E.; Lubow, M., In vitro model of cerebrospinal fluid outflow through human arachnoid granulations, Investig. Ophthalmol. Visual Sci., 47, 3664-3672 (2006)
[30] Hakim, S.; Vargas, J. G.; Burton, J., The physics of the cranial cavity, Hydrocephalus and normal pressure hydrocephalus: mechanical interpretation and mathematical model, Surg. Neurol., 26, 187-210 (1976)
[31] Hattingen, E.; Jurcoane, A.; Melber, J.; Blasel, S.; Zanella, F. E.; Neumann-Haefelin, T.; Singer, O. C., Diffusion tensor imaging in patients with adult chronic idiopathic hydrocephalus, Neurosurgery, 66, 917-924 (2010)
[32] Heisey, S. R.; Held, D.; Pappenheimer, J. R., Bulk flow and diffusion in the cerebrospinal fluid system of the goat, Am. J. Physiol., 203, 775-781 (1962)
[33] Hildebrand, F. G., Introduction to Numerical Analysis (1987), Dover Publications: Dover Publications United States, (Reprint) · Zbl 0641.65001
[34] Hoang, S. K.; Abousleiman, Y. N., Corresponding principle between anisotropic poroviscoelasticity and poroelasticity using micromechanics and application to compression of orthotropic rectangular strips, J. Appl. Phys., 112, 044907 (2012)
[35] Hochwald, G. M.; Sahar, A.; Sadik, A. R., Cerebrospinal fluid production and histological observations in animals with experimental obstructive hydrocephalus, Exp. Neurol., 25, 190-199 (1969)
[36] Hochwald, G. M.; Lux, W. E.; Sahar, A.; Ransohoff, J., Experimental hydrocephalus changes in cerebrospinal fluid dynamics as a function of time, Arch. Neurol., 26, 120-129 (1972)
[37] Hochwald, G. M., Animal models of hydrocephalus: recent developments, Proc. Soc. Exp. Biol. Med., 178, 1-11 (1985)
[38] Humphrey, J. D., Continuum biomechanics of soft biological tissues, Proc. R. Soc. A, 459, 3-46 (2003) · Zbl 1116.74385
[39] Iliff, J. J.; Wang, M.; Liao, Y.; Plogg, B. A.; Peng, W.; Gundersen, G. A.; Nedergaard, M., A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β, Sci. Trans. Med., 4 (2012), 147ra111-147ra111
[40] Johnston, M., The importance of lymphatics in cerebrospinal fluid transport, Lymphat. Res. Biol., 1, 41-45 (2003)
[41] Jones, H. C.; Andersohn, R. W., Progressive changes in cortical water and electrolyte content at three stages of rat infantile hydrocephalus and the effect of shunt treatment, Exp. Neurol., 154, 126-136 (1998)
[42] Kaczmarek, M.; Subramaniam, R.; Samuel, R. N., The hydromechanics of hydrocephalus: steady state solutions for cylindrical geometry, Bull. Math. Biol., 59, 295-323 (1997) · Zbl 0904.92026
[43] Kapoor, K. G.; Katz, S. E.; Grzybowski, D. M.; Lubow, M., Cerebrospinal fluid outflow: an evolving perspective, Brain Res. Bull., 77, 327-334 (2008)
[44] Katzman, R.; Schimmel, H.; Wilson, C. D., Diffusion of inulin as a measure of extracellular fluid space in brain, Proc. Rudolf Virchow Med. Soc., 26, 254-280 (1968)
[45] Kitanidis, P. K., Quasi-linear geo-statistical theory for inversing, Water Res. Res., 31, 2411-2419 (1995)
[46] Koh, L.; Zakharov, A.; Nagra, G.; Armstrong, D.; Friendship, R.; Johnston, M., Development of cerebrospinal fluid absorption sites in the pig and rat: connections between the subarachnoid space and lymphatic vessels in the olfactory turbinates, Anat. Embryol., 211, 335-344 (2006)
[47] Kyriacou, S. K.; Mohamed, A.; Miller, K.; Neff, S., Brain mechanics for neurosurgery: modeling issues, Biomech. Model. Mechanobiol., 1, 151-164 (2002)
[48] Leipzig, N.; Athanasius, K., Unconfined creep compression of chondrocytes, J. Biomech., 38, 77-85 (2005)
[49] Levenberg, K., A method for the solution of certain non-linear problems in least squares, Q. Appl. Math., 2, 164-168 (1944) · Zbl 0063.03501
[50] Levine, D. N., The Pathogenesis of normal pressure hydrocephalus: a theoretical analysis, Bull. Math. Biol., 61, 875-916 (1999) · Zbl 1323.92105
[51] Lux, W. E.; Hochwald, G. M.; Sahar, A.; Ransohoff, J., Periventricular water content effect of pressure in experimental chronic hydrocephalus, Arch. Neurol., 23, 475-479 (1970)
[52] Marquardt, D. W., An algorithm for least-square estimation of nonlinear parameters, J. Soc. Ind. Appl. Math., 11, 431-441 (1963) · Zbl 0112.10505
[53] Mehrabian, A.; Abousleiman, Y. N., The dilative intake of poroelastic inclusions an alternative to Mandel-Cryer effect, Acta Geotech., 4, 249-259 (2009)
[54] Mehrabian, A.; Abousleiman, Y., General solutions to poroviscoelastic model of the human brain tissue, J. Theor. Biol., 291, 105-118 (2011) · Zbl 1397.92349
[55] Mehrabian, A.; Abousleiman, Y., Generalized Biot׳s theory and Mandel׳s problem of multiple-porosity and multiple-permeability poroelasticity, J. Geophys. Res.: Solid Earth, 119, 2745-2763 (2014)
[56] Mehrabian, A.; Abousleiman, Y. N., Gassmann equations and the constitutive relations for multiple-porosity and multiple-permeability poroelasticity with applications to oil and gas shale, Int. J. Numer. Anal. Methods Geomech. (2015)
[57] Miller, J. M.; McAllister, J. P., Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus, Cerebrospinal Fluid Res., 4 (2007), 8454-4
[58] Miller, K., Constitutive model of brain tissue suitable for finite element analysis of surgical procedures, J. Biomech., 32, 531-537 (1999)
[59] Miller, K., Biomechanics of brain (2011), Springer: Springer New York
[60] Nagashima, T.; Tamaki, N.; Matsumoto, S.; Horwitz, B.; Seguchi, Y., Biomechanics of hydrocephalus: a new theoretical model, Neurosurgery, 21, 898-904 (1987)
[61] Nguyen, V. X.; Abousleiman, Y. N., Poromechanics solutions to plane strain and axisymmetric mandel-type problems in dual-porosity and dual-permeability medium, J. Appl. Mech., 77 (2010)
[62] Okolie, E. C., Empirical characterization of economic mineral (kaolin) deposits from vertical electrical sounding investigations in Ubulu-uku, delta state Nigeria, Int. J. Res. Rev. Appl. Sci., 13, 492-501 (2012)
[63] Oliver, D. S.; Reynolds, A. C.; Ning, L., Inverse theory for petroleum reservoir characterization and history matching (2008), Cambridge University Press: Cambridge University Press New York
[64] Orešković, D.; Klarica, M., Development of hydrocephalus and classical hypothesis of cerebrospinal fluid hydrodynamics: facts and illusions, Progress Neurobiol., 94, 238-258 (2011)
[65] Ozan, C.; Germanovich, L. N.; Mukundan, S.; Puzrin, M., A model of subdural hematoma caused by ventriculostomy procedure. In Proceedings of the IV Biot Conference, (Ling, H. I.; Smyth, A.; Betti, R. (2009), DEStech Publications: DEStech Publications PA, USA), 107-112
[66] Owler, B. K.; Pena, A.; Momjian, S.; Czosnyka, Z.; Czosnyka, M.; Harris, N. G.; Pickard, J. D., Changes in cerebral blood flow during cerebrospinal fluid pressure manipulation in patients with normal pressure hydrocephalus and colon; a methodological study, Nature J. Cereb. Blood Flow Metabol., 24, 579-587 (2004)
[67] Pappenheimer, J. R.; Heisey, E. F.; Jordan, E. F.; Downer, J. D., Perfusion of the cerebral ventricular system in unanesthetized goats, Am. J. Physiol., 203, 763-774 (1962)
[68] Rall, D. P.; Oppelt, W. W.; Patlak, C. S., Extracellular space of brain as determined by diffusion, Life Sci., 2, 43-48 (1962)
[70] Rice, J. R.; Cleary, M. P., Some basic stress diffusion solutions for fluid saturated elastic porous media with compressible constituents, Rev. Geophys. Space Phys., 14, 227-241 (1976)
[71] Roth, G.; Dicke, U., Evolution of the brain and intelligence, Trends Cognit. Sci., 9, 250-257 (2005)
[72] Sahar, A.; Hochwald, G. M.; Sadik, A. R.; Ransohoff, J., Cerebrospinal fluid absorption in animals with experimental obstructive hydrocephalus, Arch. Neurol., 21, 638-644 (1969)
[73] Sahar, A.; Hochwald, G. M.; Ransohoff, J., Alternate pathway for cerebrospinal fluid absorption in animals with experimental obstructive hydrocephalus, Exp. Neurol., 25, 200-206 (1969)
[74] Sahar, A.; Hochwald, G. M.; Ransohoff, J., Experimental hydrocephalus: cerebrospinal fluid formation and ventricular size as a function of intraventricular pressure, J. Neurol. Sci., 11, 81-91 (1969)
[75] Sahar, A.; Hochwald, G. A.; Ransohoff, J., Passage of cerebrospinal fluid into cranial venous sinuses in normal and experimental hydrocephalic cats, Exp. Neurol., 28, 113-122 (1970)
[76] Sahar, A., The effect of pressure on the production of cerebrospinal fluid by the choroid plexus, J. Neurol. Sci., 16, 49-58 (1972)
[77] Shulyakov, A. V.; Cenkowski, S. S.; Buist, R. J.; Del Bigio, M. R., Age-dependence of intracranial viscoelastic properties in living rats, J. Mech. Behav. Biomed. Mater., 4, 484-497 (2011)
[78] Shulyakov, A. V.; Buist, R. J.; Del Bigio, M. R., Intracranial biomechanics of acute experimental hydrocephalus in live rats, Neurosurgery, 71, 1032-1040 (2012)
[79] Sivaloganathan, S.; Drake, J.; Tenti, G., Mathematical pressure volume models of the cerebrospinal fluid, Appl. Math. Comput., 94, 243-266 (1998)
[80] Smillie, A.; Sobey, I.; Molnar, Z., A hydroelastic model of hydrocephalus, J. Fluid Mech., 539, 417-443 (2005) · Zbl 1076.74040
[81] Sobey, I.; Eisentrager, A.; Wirth, B.; Czosnyka, M., Simulation of cerebral infusion tests using a poroelastic model, Int. J. Numer. Anal. Model.: Ser. B, 3, 52-64 (2012) · Zbl 1274.76320
[82] Strecker, E. P.; Scheffel, E. P.U.; Kelley, J. E.T.; James, A. E., Cerebrospinal fluid absorption in communicating hydrocephalus. Evaluation of transfer of radioactive albumin from subarachnoid space to plasma, Neurology, 23, 854-864 (1973)
[83] Tarantola, A., Inverse problem theory (2005), SIAM: SIAM USA
[84] Taylor, P. A.; Aifantis, E. C., On the theory of diffusion in linear viscoelastic media, Acta Mech., 44, 259-298 (1982) · Zbl 0511.73127
[85] Taylor, Z.; Miller, K., Reassessment of brain elasticity for analysis of biomechanics of hydrocephalus, J. Biomech., 37, 1263-1269 (2004)
[86] Torvik, A.; Stenwig, A. E., The pathology of experimental obstructive hydrocephalus, Acta Neuropathol., 38, 21-26 (1977)
[87] Tully, B.; Ventikos, Y., Coupling poroelasticity and CFD for cerebrospinal fluid hydrodynamics, IEEE Trans. Biomed. Eng., 56, 1644-1651 (2009)
[88] Tully, B.; Ventikos, Y., Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus, J. Fluid Mech., 667, 188-215 (2011) · Zbl 1225.76317
[89] Vardakis, J. C.; Tully, B. J.; Ventikos, Y., Multicompartmental poroelasticity as a platform for the integrative modeling of water transport in the brain, 305-316 (2013), Springer: Springer Netherlands
[90] Wang, H. F., Theory of linear poroelasticity with applications to geomechanics and hydrogeology, 90-91 (2000), Princeton University Press: Princeton University Press New Jersey
[91] Weerakkody, R. A.; Czosnyka, M.; Schuhmann, M. U.; Schmidt, E.; Keong, T.; Santarius, T.; Pickard, J. D.; Czosnyka, Z., Clinical assessment of cerebrospinal fluid dynamics in hydrocephalus, Guide to interpretation based on observational study, Acta Neurol. Scand., 24, 85-98 (2011)
[92] Wilson, R. K.; Aifantis, E. C., On the theory of consolidation with double porosity, Int. J. Eng. Sci., 20, 1009-1035 (1982) · Zbl 0493.76094
[93] Wirth, B.; Sobey, I., Analytic solution during an infusion test of the linear unsteady poroelastic equations in a spherically symmetric model of the brain, Math. Med. Biol., 26, 25-61 (2009) · Zbl 1159.92011
[94] Xie, L.; Kang, H.; Xu, Q.; Chen, M. J.; Liao, Y.; Thiyagarajan, M.; Nedergaard, M., Sleep drives metabolite clearance from the adult brain, Science, 342, 373-377 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.