Wang, Lina; Tian, Hongjiong; Yi, Lijun An hp-version of the discontinuous Galerkin time-stepping method for Volterra integral equations with weakly singular kernels. (English) Zbl 07310815 Appl. Numer. Math. 161, 218-232 (2021). MSC: 65 45E 65N 65R 35J PDF BibTeX XML Cite \textit{L. Wang} et al., Appl. Numer. Math. 161, 218--232 (2021; Zbl 07310815) Full Text: DOI
Dehbozorgi, Raziyeh; Nedaiasl, Khadijeh Numerical solution of nonlinear weakly singular Volterra integral equations of the first kind: an hp-version collocation approach. (English) Zbl 07310808 Appl. Numer. Math. 161, 111-136 (2021). MSC: 45D05 65L60 65L70 PDF BibTeX XML Cite \textit{R. Dehbozorgi} and \textit{K. Nedaiasl}, Appl. Numer. Math. 161, 111--136 (2021; Zbl 07310808) Full Text: DOI
Liu, Hongyan; Huang, Jin; He, Xiaoming Bivariate barycentric rational interpolation method for two dimensional fractional Volterra integral equations. (English) Zbl 07309605 J. Comput. Appl. Math. 389, Article ID 113339, 14 p. (2021). MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{H. Liu} et al., J. Comput. Appl. Math. 389, Article ID 113339, 14 p. (2021; Zbl 07309605) Full Text: DOI
Yang, Changqing; Hou, Jianhua Jacobi spectral approximation for boundary value problems of nonlinear fractional pantograph differential equations. (English) Zbl 07307381 Numer. Algorithms 86, No. 3, 1089-1108 (2021). MSC: 65L03 34K37 45D05 65R20 PDF BibTeX XML Cite \textit{C. Yang} and \textit{J. Hou}, Numer. Algorithms 86, No. 3, 1089--1108 (2021; Zbl 07307381) Full Text: DOI
Mirzaee, Farshid; Alipour, Sahar Quintic B-spline collocation method to solve \(n\)-dimensional stochastic Itô-Volterra integral equations. (English) Zbl 07305054 J. Comput. Appl. Math. 384, Article ID 113153, 9 p. (2021). MSC: 60H20 65R20 45D05 65D30 PDF BibTeX XML Cite \textit{F. Mirzaee} and \textit{S. Alipour}, J. Comput. Appl. Math. 384, Article ID 113153, 9 p. (2021; Zbl 07305054) Full Text: DOI
Liu, Ling; Ma, Junjie Block collocation boundary value solutions of the first-kind Volterra integral equations. (English) Zbl 07300827 Numer. Algorithms 86, No. 2, 911-932 (2021). MSC: 65 PDF BibTeX XML Cite \textit{L. Liu} and \textit{J. Ma}, Numer. Algorithms 86, No. 2, 911--932 (2021; Zbl 07300827) Full Text: DOI
Li, Min; Huang, Chengming; Hu, Peng; Wen, Jiao Mean-square stability and convergence of a split-step theta method for stochastic Volterra integral equations. (English) Zbl 1451.65009 J. Comput. Appl. Math. 382, Article ID 113077, 13 p. (2021). MSC: 65C30 45D05 65R20 PDF BibTeX XML Cite \textit{M. Li} et al., J. Comput. Appl. Math. 382, Article ID 113077, 13 p. (2021; Zbl 1451.65009) Full Text: DOI
Adıvar, Murat; Raffoul, Youssef N. Stability of dynamical systems on time scales. (English) Zbl 07312900 Int. J. Difference Equ. 15, No. 1, 11-29 (2020). MSC: 45D05 45J05 PDF BibTeX XML Cite \textit{M. Adıvar} and \textit{Y. N. Raffoul}, Int. J. Difference Equ. 15, No. 1, 11--29 (2020; Zbl 07312900) Full Text: Link
Islam, Muhammad N.; Neugebauer, Jeffrey T. Initial value problems for fractional differential equations of Riemann-Liouville type. (English) Zbl 07312896 Adv. Dyn. Syst. Appl. 15, No. 2, 113-124 (2020). MSC: 34A08 34A12 45D05 45E10 45G05 PDF BibTeX XML Cite \textit{M. N. Islam} and \textit{J. T. Neugebauer}, Adv. Dyn. Syst. Appl. 15, No. 2, 113--124 (2020; Zbl 07312896) Full Text: Link
Reinfelds, Andrejs; Christian, Shraddha Hyers-Ulam stability of Volterra type integral equations on time scales. (English) Zbl 07312891 Adv. Dyn. Syst. Appl. 15, No. 1, 39-48 (2020). MSC: 45D05 45G10 34N05 PDF BibTeX XML Cite \textit{A. Reinfelds} and \textit{S. Christian}, Adv. Dyn. Syst. Appl. 15, No. 1, 39--48 (2020; Zbl 07312891) Full Text: Link
Ghadle, Kirtiwant P.; Adhe, Abhijeet B. Steady-state temperature analysis to 2d elasticity and thermo-elasticity problems for inhomogeneous solids in half-plane. (English) Zbl 07307924 J. Korean Soc. Ind. Appl. Math. 24, No. 1, 93-102 (2020). MSC: 74 80 PDF BibTeX XML Cite \textit{K. P. Ghadle} and \textit{A. B. Adhe}, J. Korean Soc. Ind. Appl. Math. 24, No. 1, 93--102 (2020; Zbl 07307924) Full Text: DOI
Feng, Lixin; Yang, Xiaoxu Spectral regularization method for Volterra integral equation of the first kind with noise data. (Chinese. English summary) Zbl 07294892 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 3, 650-661 (2020). MSC: 65R30 65R20 PDF BibTeX XML Cite \textit{L. Feng} and \textit{X. Yang}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 3, 650--661 (2020; Zbl 07294892)
Ali, Faeem; Ali, Javid Convergence, stability, and data dependence of a new iterative algorithm with an application. (English) Zbl 07291012 Comput. Appl. Math. 39, No. 4, Paper No. 267, 15 p. (2020). MSC: 47H05 47H09 47H10 PDF BibTeX XML Cite \textit{F. Ali} and \textit{J. Ali}, Comput. Appl. Math. 39, No. 4, Paper No. 267, 15 p. (2020; Zbl 07291012) Full Text: DOI
Maximov, Serguei; Cortes-Penagos, Consuelo de J. A long-time asymptotic solution to the g-renewal equation for underlying distributions with nondecreasing hazard functions. (English) Zbl 07285841 Math. Methods Oper. Res. 92, No. 2, 311-341 (2020). MSC: 62N05 60K20 45D05 PDF BibTeX XML Cite \textit{S. Maximov} and \textit{C. de J. Cortes-Penagos}, Math. Methods Oper. Res. 92, No. 2, 311--341 (2020; Zbl 07285841) Full Text: DOI
Keller-Ressel, M.; Majid, A. A comparison principle between rough and non-rough Heston models – with applications to the volatility surface. (English) Zbl 07282755 Quant. Finance 20, No. 6, 919-933 (2020). MSC: 91G30 PDF BibTeX XML Cite \textit{M. Keller-Ressel} and \textit{A. Majid}, Quant. Finance 20, No. 6, 919--933 (2020; Zbl 07282755) Full Text: DOI
Toranj-Simin, Mohammad; Hadizadeh, Mahmoud On a class of noncompact weakly singular Volterra integral equations: theory and application to fractional differential equations with variable coefficient. (English) Zbl 07282584 J. Integral Equations Appl. 32, No. 2, 193-212 (2020). MSC: 45D05 34A08 45P05 PDF BibTeX XML Cite \textit{M. Toranj-Simin} and \textit{M. Hadizadeh}, J. Integral Equations Appl. 32, No. 2, 193--212 (2020; Zbl 07282584) Full Text: DOI Euclid
Seif, Yaser; Lotfi, Taher An efficient multistep iteration scheme for systems of nonlinear algebraic equations associated with integral equations. (English) Zbl 1452.65093 Math. Methods Appl. Sci. 43, No. 14, 8105-8115 (2020). MSC: 65H10 45D05 PDF BibTeX XML Cite \textit{Y. Seif} and \textit{T. Lotfi}, Math. Methods Appl. Sci. 43, No. 14, 8105--8115 (2020; Zbl 1452.65093) Full Text: DOI
Derakhshan, Maryam; Zarebnia, Mohammad New approach for solution of Volterra integral equations using spline quasi-interpolant. (English) Zbl 1446.65207 J. Hyperstruct. 8, No. 2, 156-170 (2020). MSC: 65R20 41A15 45D05 45M05 PDF BibTeX XML Cite \textit{M. Derakhshan} and \textit{M. Zarebnia}, J. Hyperstruct. 8, No. 2, 156--170 (2020; Zbl 1446.65207) Full Text: Link
Moharramnia, Aram; Eghbali, Nasrin Asymptotic stability of some equations. (English) Zbl 1446.45001 J. Hyperstruct. 8, No. 2, 150-155 (2020). MSC: 45D05 34A08 34D05 34D20 45M05 45M10 PDF BibTeX XML Cite \textit{A. Moharramnia} and \textit{N. Eghbali}, J. Hyperstruct. 8, No. 2, 150--155 (2020; Zbl 1446.45001) Full Text: Link
Mamanazarov, A. O. Unique solvability of problems for a mixed parabolic equation in unbounded domain. (English) Zbl 1452.35113 Lobachevskii J. Math. 41, No. 9, 1837-1845 (2020). MSC: 35M12 35A01 35A02 45B05 45D05 34A08 34B60 35B45 33E12 PDF BibTeX XML Cite \textit{A. O. Mamanazarov}, Lobachevskii J. Math. 41, No. 9, 1837--1845 (2020; Zbl 1452.35113) Full Text: DOI
Reinfelds, Andrejs; Christian, Shraddha Hyers-Ulam stability of a nonlinear Volterra integral equation on time scales. (English) Zbl 07271996 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer (ISBN 978-3-030-56322-6/hbk; 978-3-030-56323-3/ebook). Springer Proceedings in Mathematics & Statistics 333, 123-131 (2020). MSC: 45 39B82 PDF BibTeX XML Cite \textit{A. Reinfelds} and \textit{S. Christian}, in: Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1--5, 2019. Cham: Springer. 123--131 (2020; Zbl 07271996) Full Text: DOI
Nabil, Tamer Existence results for nonlinear coupled system of integral equations of Urysohn Volterra-Chandrasekhar mixed type. (English) Zbl 07271202 Demonstr. Math. 53, 236-248 (2020). MSC: 47H10 45G15 PDF BibTeX XML Cite \textit{T. Nabil}, Demonstr. Math. 53, 236--248 (2020; Zbl 07271202) Full Text: DOI
Noeiaghdam, S.; Sidorov, D.; Sizikov, V.; Sidorov, N. Control of accuracy of Taylor-collocation method to solve the weakly regular Volterra integral equations of the first kind by using the CESTAC method. (English) Zbl 07270314 Appl. Comput. Math. 19, No. 1, 87-105 (2020). MSC: 45D05 45E10 65R20 PDF BibTeX XML Cite \textit{S. Noeiaghdam} et al., Appl. Comput. Math. 19, No. 1, 87--105 (2020; Zbl 07270314) Full Text: Link
Lan, Kunquan Equivalence of higher order linear Riemann-Liouville fractional differential and integral equations. (English) Zbl 07268388 Proc. Am. Math. Soc. 148, No. 12, 5225-5234 (2020). MSC: 34A08 34A30 34A12 45D05 PDF BibTeX XML Cite \textit{K. Lan}, Proc. Am. Math. Soc. 148, No. 12, 5225--5234 (2020; Zbl 07268388) Full Text: DOI
Yuldasheva, A. V. On solvability of one singular equation of peridynamics. (English) Zbl 1450.74001 Lobachevskii J. Math. 41, No. 6, 1131-1136 (2020). MSC: 74A70 74H20 74H25 74H30 35Q74 PDF BibTeX XML Cite \textit{A. V. Yuldasheva}, Lobachevskii J. Math. 41, No. 6, 1131--1136 (2020; Zbl 1450.74001) Full Text: DOI
Okboev, A. B. Tricomi problem for second kind parabolic hyperbolic type equation. (English) Zbl 1450.35188 Lobachevskii J. Math. 41, No. 1, 58-70 (2020). MSC: 35M13 45D05 PDF BibTeX XML Cite \textit{A. B. Okboev}, Lobachevskii J. Math. 41, No. 1, 58--70 (2020; Zbl 1450.35188) Full Text: DOI
Arana-Jiménez, M.; Berenguer, M. I.; Gámez, D.; Garralda-Guillem, A. I.; Ruiz Galán, M. A perturbed collage theorem and its application to inverse interval integral problems. (English) Zbl 07265414 Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105365, 9 p. (2020). MSC: 45Q05 47S40 65L10 65R20 PDF BibTeX XML Cite \textit{M. Arana-Jiménez} et al., Commun. Nonlinear Sci. Numer. Simul. 90, Article ID 105365, 9 p. (2020; Zbl 07265414) Full Text: DOI
Chuev, N. P. On the existence and uniqueness of the solution to the Cauchy problem for a system of integral equations describing the motion of a rarefied mass of a self-gravitating gas. (English. Russian original) Zbl 1450.35212 Comput. Math. Math. Phys. 60, No. 4, 663-672 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 4, 676-686 (2020). MSC: 35Q35 35R09 45D05 76N15 76P05 35R35 65R20 PDF BibTeX XML Cite \textit{N. P. Chuev}, Comput. Math. Math. Phys. 60, No. 4, 663--672 (2020; Zbl 1450.35212); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 4, 676--686 (2020) Full Text: DOI
Monakov, G. V.; Tikhomirov, S. B.; Yakovlev, A. A. Displacement of viscous fluids in a set of parallel pipes. (English. Russian original) Zbl 1450.35220 Comput. Math. Math. Phys. 60, No. 3, 484-497 (2020); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 3, 489-502 (2020). MSC: 35Q35 76S05 45D05 35R30 PDF BibTeX XML Cite \textit{G. V. Monakov} et al., Comput. Math. Math. Phys. 60, No. 3, 484--497 (2020; Zbl 1450.35220); translation from Zh. Vychisl. Mat. Mat. Fiz. 60, No. 3, 489--502 (2020) Full Text: DOI
Balkizov, Zh. A. Nonlocal boundary-value problem for a third-order parabolic-hyperbolic equation with degeneration of type and order in the hyperbolicity domain. (English. Russian original) Zbl 1450.35181 J. Math. Sci., New York 250, No. 5, 728-739 (2020); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 149, 14-24 (2018). MSC: 35M10 35M13 35K35 PDF BibTeX XML Cite \textit{Zh. A. Balkizov}, J. Math. Sci., New York 250, No. 5, 728--739 (2020; Zbl 1450.35181); translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. 149, 14--24 (2018) Full Text: DOI
Ahmed, Hoda F. Analytic approximate solutions for the 1D and 2D nonlinear fractional diffusion equations of Fisher type. (English) Zbl 07258544 C. R. Acad. Bulg. Sci. 73, No. 3, 320-330 (2020). Reviewer: Angela Slavova (Sofia) MSC: 45B05 45D05 45A05 45J05 PDF BibTeX XML Cite \textit{H. F. Ahmed}, C. R. Acad. Bulg. Sci. 73, No. 3, 320--330 (2020; Zbl 07258544) Full Text: DOI
Pikula, Milenko; Dragana, Nedić; Elmir, Čatrnja Partial inverse spectral problem for the Sturm-Liouville operator with delay. (English) Zbl 07258264 Sarajevo J. Math. 16(29), No. 1, 41-54 (2020). MSC: 34B24 34A55 PDF BibTeX XML Cite \textit{M. Pikula} et al., Sarajevo J. Math. 16(29), No. 1, 41--54 (2020; Zbl 07258264) Full Text: DOI
Wen, Jiaqiang; Shi, Yufeng Symmetrical martingale solutions of backward doubly stochastic Volterra integral equations. (English) Zbl 07256668 Comput. Math. Appl. 79, No. 5, 1435-1446 (2020). MSC: 60H10 60G44 65C30 PDF BibTeX XML Cite \textit{J. Wen} and \textit{Y. Shi}, Comput. Math. Appl. 79, No. 5, 1435--1446 (2020; Zbl 07256668) Full Text: DOI
Felahat, M.; Kadkhoda, N.; Fečkan, M. Investigation of solutions to the fractional integro-differential equations of Bratu-type using Legendre wavelets method. (English) Zbl 07254892 Miskolc Math. Notes 21, No. 1, 189-202 (2020). MSC: 35R09 35R11 PDF BibTeX XML Cite \textit{M. Felahat} et al., Miskolc Math. Notes 21, No. 1, 189--202 (2020; Zbl 07254892) Full Text: DOI
Jakubowski, Jacek; Wiśniewolski, Maciej Volterra integral equations of the first kind and applications to linear diffusions. (English) Zbl 07254286 Trans. Am. Math. Soc. 373, No. 10, 7455-7472 (2020). MSC: 45D05 60J25 60G40 PDF BibTeX XML Cite \textit{J. Jakubowski} and \textit{M. Wiśniewolski}, Trans. Am. Math. Soc. 373, No. 10, 7455--7472 (2020; Zbl 07254286) Full Text: DOI
Durdiev, D. K.; Totieva, Z. D. Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives. (English) Zbl 1447.35379 Sib. Èlektron. Mat. Izv. 17, 1106-1127 (2020). MSC: 35R30 35L15 35R09 35A08 PDF BibTeX XML Cite \textit{D. K. Durdiev} and \textit{Z. D. Totieva}, Sib. Èlektron. Mat. Izv. 17, 1106--1127 (2020; Zbl 1447.35379) Full Text: DOI
Egidi, Nadaniela; Maponi, Pierluigi An SVE approach for the numerical solution of ordinary differential equations. (English) Zbl 07249918 Sergeyev, Yaroslav D. (ed.) et al., Numerical computations: theory and algorithms. Third international conference, NUMTA 2019, Crotone, Italy, June 15–21, 2019. Revised selected papers. Part I. Cham: Springer (ISBN 978-3-030-39080-8/pbk; 978-3-030-39081-5/ebook). Lecture Notes in Computer Science 11973, 70-85 (2020). MSC: 65 PDF BibTeX XML Cite \textit{N. Egidi} and \textit{P. Maponi}, Lect. Notes Comput. Sci. 11973, 70--85 (2020; Zbl 07249918) Full Text: DOI
Al-Ahmad, S.; Sulaiman, Ibrahim Mohammed; Mamat, M. An efficient modification of differential transform method for solving integral and integro-differential equations. (English) Zbl 07243653 Aust. J. Math. Anal. Appl. 17, No. 2, Article No. 5, 15 p. (2020). MSC: 34A45 44A10 65L99 PDF BibTeX XML Cite \textit{S. Al-Ahmad} et al., Aust. J. Math. Anal. Appl. 17, No. 2, Article No. 5, 15 p. (2020; Zbl 07243653) Full Text: Link
Ghiat, Mourad; Guebbai, Hamza; Kurulay, Muhammet; Segni, Sami On the weakly singular integro-differential nonlinear Volterra equation depending in acceleration term. (English) Zbl 07241631 Comput. Appl. Math. 39, No. 3, Paper No. 206, 13 p. (2020). MSC: 45D05 45G05 45J99 45E99 65R20 PDF BibTeX XML Cite \textit{M. Ghiat} et al., Comput. Appl. Math. 39, No. 3, Paper No. 206, 13 p. (2020; Zbl 07241631) Full Text: DOI
Shukla, Satish; Dubey, Nikita Some fixed point results for relation theoretic weak \(\varphi \)-contractions in cone metric spaces equipped with a binary relation and application to the system of Volterra type equations. (English) Zbl 1440.54044 Positivity 24, No. 4, 1041-1059 (2020). MSC: 54H25 54E40 45D05 PDF BibTeX XML Cite \textit{S. Shukla} and \textit{N. Dubey}, Positivity 24, No. 4, 1041--1059 (2020; Zbl 1440.54044) Full Text: DOI
Inoue, Hideki Explicit formula for Schrödinger wave operators on the half-line for potentials up to optimal decay. (English) Zbl 07233262 J. Funct. Anal. 279, No. 7, Article ID 108630, 22 p. (2020). MSC: 47A40 34L25 PDF BibTeX XML Cite \textit{H. Inoue}, J. Funct. Anal. 279, No. 7, Article ID 108630, 22 p. (2020; Zbl 07233262) Full Text: DOI
Lipton, Alexander Old problems, classical methods, new solutions. (English) Zbl 1447.91178 Int. J. Theor. Appl. Finance 23, No. 4, Article ID 2050024, 37 p. (2020). MSC: 91G20 60G40 35Q91 PDF BibTeX XML Cite \textit{A. Lipton}, Int. J. Theor. Appl. Finance 23, No. 4, Article ID 2050024, 37 p. (2020; Zbl 1447.91178) Full Text: DOI
Moosavi Nora, Seyyedeh Roodabeh; Taghizadeh, Nasir Study on solving two-dimensional linear and nonlinear Volterra partial integro-differential equations by reduced differential transform method. (English) Zbl 1439.35115 Appl. Appl. Math. 15, No. 1, 394-407 (2020). MSC: 35C05 35E15 45D05 45G10 PDF BibTeX XML Cite \textit{S. R. Moosavi Nora} and \textit{N. Taghizadeh}, Appl. Appl. Math. 15, No. 1, 394--407 (2020; Zbl 1439.35115) Full Text: Link
Younus, Awais; Bukhsh, Khizra; Tunç, Cemil Existence of resolvent for conformable fractional Volterra integral equations. (English) Zbl 07225178 Appl. Appl. Math. 15, No. 1, 372-393 (2020). MSC: 45D05 26A33 47A10 PDF BibTeX XML Cite \textit{A. Younus} et al., Appl. Appl. Math. 15, No. 1, 372--393 (2020; Zbl 07225178) Full Text: Link
Kasumo, Christian; Kasozi, Juma; Kuznetsov, Dmitry Dividend maximization under a set ruin probability target in the presence of proportional and excess-of-loss reinsurance. (English) Zbl 1447.91141 Appl. Appl. Math. 15, No. 1, 13-37 (2020). MSC: 91G05 45D05 62P05 PDF BibTeX XML Cite \textit{C. Kasumo} et al., Appl. Appl. Math. 15, No. 1, 13--37 (2020; Zbl 1447.91141) Full Text: Link
Mosazadeh, Seyfollah; Koyunbakan, Hikmet A stability result for an inverse problem with integrodifferential operator on a finite interval. (English) Zbl 07223724 J. Integral Equations Appl. 32, No. 1, 77-87 (2020). MSC: 45J05 45Q05 45C05 PDF BibTeX XML Cite \textit{S. Mosazadeh} and \textit{H. Koyunbakan}, J. Integral Equations Appl. 32, No. 1, 77--87 (2020; Zbl 07223724) Full Text: DOI Euclid
Grace, Said R.; Jadlovská, Irena; Zafer, Agacik On oscillation of second order delay differential equations with a sublinear neutral term. (English) Zbl 07220356 Mediterr. J. Math. 17, No. 4, Paper No. 116, 11 p. (2020). MSC: 34K11 34K12 45D05 PDF BibTeX XML Cite \textit{S. R. Grace} et al., Mediterr. J. Math. 17, No. 4, Paper No. 116, 11 p. (2020; Zbl 07220356) Full Text: DOI
Boukrouche, Mahdi; Tarzia, Domingo A. A heat conduction problem with sources depending on the average of the heat flux on the boundary. (English) Zbl 1439.35203 Rev. Unión Mat. Argent. 61, No. 1, 87-101 (2020). MSC: 35K20 35C15 35K05 35K60 45D05 45E10 80A19 80A21 PDF BibTeX XML Cite \textit{M. Boukrouche} and \textit{D. A. Tarzia}, Rev. Unión Mat. Argent. 61, No. 1, 87--101 (2020; Zbl 1439.35203) Full Text: DOI
Yaghoobnia, A. R.; Ezzati, R. Using Bernstein multi-scaling polynomials to obtain numerical solution of Volterra integral equations system. (English) Zbl 1449.65371 Comput. Appl. Math. 39, No. 3, Paper No. 170, 13 p. (2020). MSC: 65R20 45D05 45G15 41A58 PDF BibTeX XML Cite \textit{A. R. Yaghoobnia} and \textit{R. Ezzati}, Comput. Appl. Math. 39, No. 3, Paper No. 170, 13 p. (2020; Zbl 1449.65371) Full Text: DOI
Botosaru, Irene Nonparametric analysis of a duration model with stochastic unobserved heterogeneity. (English) Zbl 07213042 J. Econom. 217, No. 1, 112-139 (2020). MSC: 62 91 PDF BibTeX XML Cite \textit{I. Botosaru}, J. Econom. 217, No. 1, 112--139 (2020; Zbl 07213042) Full Text: DOI
Okrasińska-Płociniczak, Hanna; Płociniczak, Łukasz; Rocha, Juan; Sadarangani, Kishin Solvability in Hölder spaces of an integral equation which models dynamics of the capillary rise. (English) Zbl 07212792 J. Math. Anal. Appl. 490, No. 1, Article ID 124237, 12 p. (2020). Reviewer: Alexander N. Tynda (Penza) MSC: 45D05 45G10 65R20 PDF BibTeX XML Cite \textit{H. Okrasińska-Płociniczak} et al., J. Math. Anal. Appl. 490, No. 1, Article ID 124237, 12 p. (2020; Zbl 07212792) Full Text: DOI
Soradi-Zeid, Samaneh; Jahanshahi, Hadi; Yousefpour, Amin; Bekiros, Stelios King algorithm: a novel optimization approach based on variable-order fractional calculus with application in chaotic financial systems. (English) Zbl 1434.65084 Chaos Solitons Fractals 132, Article ID 109569, 9 p. (2020). MSC: 65K10 65L03 49M25 34A08 45D05 91G80 PDF BibTeX XML Cite \textit{S. Soradi-Zeid} et al., Chaos Solitons Fractals 132, Article ID 109569, 9 p. (2020; Zbl 1434.65084) Full Text: DOI
Huang, Jian; Cen, Zhongdi; Liu, Li-Bin; Zhao, Jialiang An efficient numerical method for a Riemann-Liouville two-point boundary value problem. (English) Zbl 1441.65065 Appl. Math. Lett. 103, Article ID 106201, 8 p. (2020). MSC: 65L10 65L50 26A33 65R20 PDF BibTeX XML Cite \textit{J. Huang} et al., Appl. Math. Lett. 103, Article ID 106201, 8 p. (2020; Zbl 1441.65065) Full Text: DOI
Du, Hong; Chen, Zhong A new reproducing kernel method with higher convergence order for solving a Volterra-Fredholm integral equation. (English) Zbl 1445.65048 Appl. Math. Lett. 102, Article ID 106117, 8 p. (2020). Reviewer: Alexander N. Tynda (Penza) MSC: 65R20 45D05 45B05 65F10 PDF BibTeX XML Cite \textit{H. Du} and \textit{Z. Chen}, Appl. Math. Lett. 102, Article ID 106117, 8 p. (2020; Zbl 1445.65048) Full Text: DOI
Abdou, M. A.; Soliman, A. A.; Abdel-Aty, M. A. On a discussion of Volterra-Fredholm integral equation with discontinuous kernel. (English) Zbl 1450.45011 J. Egypt. Math. Soc. 28, Paper No. 11, 10 p. (2020). MSC: 45N05 45B05 45D05 65R20 PDF BibTeX XML Cite \textit{M. A. Abdou} et al., J. Egypt. Math. Soc. 28, Paper No. 11, 10 p. (2020; Zbl 1450.45011) Full Text: DOI
Włodarczyk, Kazimierz Set-valued leader type contractions, periodic point and endpoint theorems, quasi-triangular spaces, Bellman and Volterra equations. (English) Zbl 07205607 Fixed Point Theory Appl. 2020, Paper No. 6, 54 p. (2020). MSC: 47H04 47H10 54A05 65J15 65Q20 45D05 PDF BibTeX XML Cite \textit{K. Włodarczyk}, Fixed Point Theory Appl. 2020, Paper No. 6, 54 p. (2020; Zbl 07205607) Full Text: DOI
Ma, Junjie; Liu, Huilan Fractional collocation boundary value methods for the second kind Volterra equations with weakly singular kernels. (English) Zbl 07202188 Numer. Algorithms 84, No. 2, 743-760 (2020). MSC: 65 PDF BibTeX XML Cite \textit{J. Ma} and \textit{H. Liu}, Numer. Algorithms 84, No. 2, 743--760 (2020; Zbl 07202188) Full Text: DOI
Roohollahi, A.; Ghazanfari, B.; Akhavan, S. Numerical solution of the mixed Volterra-Fredholm integro-differential multi-term equations of fractional order. (English) Zbl 1436.65155 J. Comput. Appl. Math. 376, Article ID 112828, 19 p. (2020). MSC: 65M99 35R09 45K05 45D05 45B05 26A33 35R11 34A08 PDF BibTeX XML Cite \textit{A. Roohollahi} et al., J. Comput. Appl. Math. 376, Article ID 112828, 19 p. (2020; Zbl 1436.65155) Full Text: DOI
Najafi, Esmaeil Smoothing transformation for numerical solution of nonlinear weakly singular Volterra integral equations using quasilinearization and product integration methods. (English) Zbl 1436.65216 Appl. Numer. Math. 153, 540-557 (2020). MSC: 65R20 45D05 65D10 PDF BibTeX XML Cite \textit{E. Najafi}, Appl. Numer. Math. 153, 540--557 (2020; Zbl 1436.65216) Full Text: DOI
Sapountzoglou, Niklas Entropy solutions to doubly nonlinear integro-differential equations. (English) Zbl 1447.45012 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111656, 31 p. (2020). MSC: 45K05 47J35 45D05 35D99 PDF BibTeX XML Cite \textit{N. Sapountzoglou}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 192, Article ID 111656, 31 p. (2020; Zbl 1447.45012) Full Text: DOI
Cormier, Quentin; Tanré, Etienne; Veltz, Romain Long time behavior of a mean-field model of interacting neurons. (English) Zbl 1437.35708 Stochastic Processes Appl. 130, No. 5, 2553-2595 (2020). MSC: 35R60 60H15 35Q83 35R09 60B10 60G55 60K35 45D05 35Q92 PDF BibTeX XML Cite \textit{Q. Cormier} et al., Stochastic Processes Appl. 130, No. 5, 2553--2595 (2020; Zbl 1437.35708) Full Text: DOI
Khaireddine, Fernane Numerical solution of the general Volterra \(n\)th-order integro-differential equations via variational iteration method. (English) Zbl 1443.65441 Asian-Eur. J. Math. 13, No. 2, Article ID 2050042, 15 p. (2020). Reviewer: Seenith Sivasundaram (Daytona Beach) MSC: 65R20 33D45 45D05 45F05 PDF BibTeX XML Cite \textit{F. Khaireddine}, Asian-Eur. J. Math. 13, No. 2, Article ID 2050042, 15 p. (2020; Zbl 1443.65441) Full Text: DOI
Bedrossian, Jacob; Wang, Fei The linearized Vlasov and Vlasov-Fokker-Planck equations in a uniform magnetic field. (English) Zbl 1434.35228 J. Stat. Phys. 178, No. 2, 552-594 (2020). MSC: 35Q83 35Q84 45D05 82C31 82D10 PDF BibTeX XML Cite \textit{J. Bedrossian} and \textit{F. Wang}, J. Stat. Phys. 178, No. 2, 552--594 (2020; Zbl 1434.35228) Full Text: DOI
Wang, Tongke; Qin, Meng; Zhang, Zhiyue The Puiseux expansion and numerical integration to nonlinear weakly singular Volterra integral equations of the second kind. (English) Zbl 1437.65248 J. Sci. Comput. 82, No. 3, Paper No. 64, 28 p. (2020). Reviewer: Alexander N. Tynda (Penza) MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{T. Wang} et al., J. Sci. Comput. 82, No. 3, Paper No. 64, 28 p. (2020; Zbl 1437.65248) Full Text: DOI
Gumah, Ghaleb; Al-Omari, Shrideh; Baleanu, Dumitru Soft computing technique for a system of fuzzy Volterra integro-differential equations in a Hilbert space. (English) Zbl 1441.65125 Appl. Numer. Math. 152, 310-322 (2020). MSC: 65R20 26A33 45D05 26E50 PDF BibTeX XML Cite \textit{G. Gumah} et al., Appl. Numer. Math. 152, 310--322 (2020; Zbl 1441.65125) Full Text: DOI
Ma, Junjie; Kang, Hongchao Frequency-explicit convergence analysis of collocation methods for highly oscillatory Volterra integral equations with weak singularities. (English) Zbl 1439.65227 Appl. Numer. Math. 151, 1-12 (2020). MSC: 65R20 65L20 65L60 45D05 45M05 PDF BibTeX XML Cite \textit{J. Ma} and \textit{H. Kang}, Appl. Numer. Math. 151, 1--12 (2020; Zbl 1439.65227) Full Text: DOI
Nedaiasl, Khadijeh; Dehbozorgi, Raziyeh; Maleknejad, Khosrow \(hp\)-version collocation method for a class of nonlinear Volterra integral equations of the first kind. (English) Zbl 1437.65244 Appl. Numer. Math. 150, 452-477 (2020). MSC: 65R20 65L60 45J05 45D05 65L20 PDF BibTeX XML Cite \textit{K. Nedaiasl} et al., Appl. Numer. Math. 150, 452--477 (2020; Zbl 1437.65244) Full Text: DOI
Fermo, Luisa; van der Mee, Cornelis; Seatzu, Sebastiano A numerical method to compute the scattering solution for the KdV equation. (English) Zbl 1434.65204 Appl. Numer. Math. 149, 3-16 (2020). MSC: 65M70 35Q53 35Q51 37K15 45D05 65R20 35P25 PDF BibTeX XML Cite \textit{L. Fermo} et al., Appl. Numer. Math. 149, 3--16 (2020; Zbl 1434.65204) Full Text: DOI
Mokhtary, P.; Moghaddam, B. P.; Lopes, A. M.; Machado, J. A. Tenreiro A computational approach for the non-smooth solution of non-linear weakly singular Volterra integral equation with proportional delay. (English) Zbl 1436.65215 Numer. Algorithms 83, No. 3, 987-1006 (2020). MSC: 65R20 45D05 65L60 65F22 PDF BibTeX XML Cite \textit{P. Mokhtary} et al., Numer. Algorithms 83, No. 3, 987--1006 (2020; Zbl 1436.65215) Full Text: DOI
Zhang, Xiao-Yong; Li, Jun-Lin A multistep Legendre pseudo-spectral method for nonlinear Volterra integral equations. (English) Zbl 07168433 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 1, 23-35 (2020). MSC: 45D05 45G10 41A10 65L60 65L70 PDF BibTeX XML Cite \textit{X.-Y. Zhang} and \textit{J.-L. Li}, Int. J. Nonlinear Sci. Numer. Simul. 21, No. 1, 23--35 (2020; Zbl 07168433) Full Text: DOI
Zeidabadi, Hamed; Heidari, Mohammad A convergence computational scheme for system of integral equation using finite element method. (English) Zbl 1441.45002 Int. J. Dyn. Syst. Differ. Equ. 10, No. 1, 47-58 (2020). MSC: 45D05 45F05 65R20 PDF BibTeX XML Cite \textit{H. Zeidabadi} and \textit{M. Heidari}, Int. J. Dyn. Syst. Differ. Equ. 10, No. 1, 47--58 (2020; Zbl 1441.45002) Full Text: DOI
Huang, Jian; Cen, Zhongdi; Xu, Aimin; Liu, Li-Bin A posteriori error estimation for a singularly perturbed Volterra integro-differential equation. (English) Zbl 1437.65239 Numer. Algorithms 83, No. 2, 549-563 (2020). Reviewer: Alexander N. Tynda (Penza) MSC: 65R20 45D05 47G20 PDF BibTeX XML Cite \textit{J. Huang} et al., Numer. Algorithms 83, No. 2, 549--563 (2020; Zbl 1437.65239) Full Text: DOI
Panahy, Saeid; Khani, Ali The solving integro-differential equations of fractional order with the ultraspherical functions. (English) Zbl 1449.65366 Comput. Methods Differ. Equ. 8, No. 1, 205-211 (2020). MSC: 65R20 45J05 45D05 34K37 PDF BibTeX XML Cite \textit{S. Panahy} and \textit{A. Khani}, Comput. Methods Differ. Equ. 8, No. 1, 205--211 (2020; Zbl 1449.65366) Full Text: DOI
Alipour, Sahar; Mirzaee, Farshid An iterative algorithm for solving two dimensional nonlinear stochastic integral equations: a combined successive approximations method with bilinear spline interpolation. (English) Zbl 1433.65344 Appl. Math. Comput. 371, Article ID 124947, 12 p. (2020). MSC: 65R20 65D30 45D05 60H20 60H35 65C30 PDF BibTeX XML Cite \textit{S. Alipour} and \textit{F. Mirzaee}, Appl. Math. Comput. 371, Article ID 124947, 12 p. (2020; Zbl 1433.65344) Full Text: DOI
Kutsenko, Anton A. Matrix representations of multidimensional integral and ergodic operators. (English) Zbl 1433.45012 Appl. Math. Comput. 369, Article ID 124818, 10 p. (2020). MSC: 45P05 35J10 46L05 47A60 16S32 35P05 45D05 PDF BibTeX XML Cite \textit{A. A. Kutsenko}, Appl. Math. Comput. 369, Article ID 124818, 10 p. (2020; Zbl 1433.45012) Full Text: DOI arXiv
Wen, Jiaqiang; Shi, Yufeng Solvability of anticipated backward stochastic Volterra integral equations. (English) Zbl 07153418 Stat. Probab. Lett. 156, Article ID 108599, 9 p. (2020). MSC: 60H10 60H20 PDF BibTeX XML Cite \textit{J. Wen} and \textit{Y. Shi}, Stat. Probab. Lett. 156, Article ID 108599, 9 p. (2020; Zbl 07153418) Full Text: DOI
Behera, S.; Ray, S. Saha An operational matrix based scheme for numerical solutions of nonlinear weakly singular partial integro-differential equations. (English) Zbl 1433.65365 Appl. Math. Comput. 367, Article ID 124771, 18 p. (2020). MSC: 65T60 65R20 11B68 35R09 45J05 45D05 PDF BibTeX XML Cite \textit{S. Behera} and \textit{S. S. Ray}, Appl. Math. Comput. 367, Article ID 124771, 18 p. (2020; Zbl 1433.65365) Full Text: DOI
Zhang, Xiao-yong A new strategy for the numerical solution of nonlinear Volterra integral equations with vanishing delays. (English) Zbl 1433.65361 Appl. Math. Comput. 365, Article ID 124608, 19 p. (2020). MSC: 65R20 45D05 45G10 65L60 65L70 PDF BibTeX XML Cite \textit{X.-y. Zhang}, Appl. Math. Comput. 365, Article ID 124608, 19 p. (2020; Zbl 1433.65361) Full Text: DOI
Lin, Ping; Yong, Jiongmin Controlled singular Volterra integral equations and Pontryagin maximum principle. (English) Zbl 1444.45003 SIAM J. Control Optim. 58, No. 1, 136-164 (2020). MSC: 45D05 45G05 34A08 49K15 49K21 PDF BibTeX XML Cite \textit{P. Lin} and \textit{J. Yong}, SIAM J. Control Optim. 58, No. 1, 136--164 (2020; Zbl 1444.45003) Full Text: DOI arXiv
Laurençot, Philippe Mass-conserving solutions to coagulation-fragmentation equations with balanced growth. (English) Zbl 1444.45010 Colloq. Math. 159, No. 1, 127-155 (2020). MSC: 45K05 45D05 35R09 PDF BibTeX XML Cite \textit{P. Laurençot}, Colloq. Math. 159, No. 1, 127--155 (2020; Zbl 1444.45010) Full Text: DOI
Arqub, Omar Abu; Maayah, Banan Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC fractional Volterra integro-differential equations. (Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC – fractional Volterra integro-differential equations.) (English) Zbl 1448.65273 Chaos Solitons Fractals 126, 394-402 (2019). MSC: 65R10 65L03 45J05 34K37 45D05 PDF BibTeX XML Cite \textit{O. A. Arqub} and \textit{B. Maayah}, Chaos Solitons Fractals 126, 394--402 (2019; Zbl 1448.65273) Full Text: DOI
Atangana, Abdon; Araz, Seda İğret Analysis of a new partial integro-differential equation with mixed fractional operators. (English) Zbl 1448.65277 Chaos Solitons Fractals 127, 257-271 (2019). MSC: 65R20 65M06 35R09 35R11 45K05 45D05 PDF BibTeX XML Cite \textit{A. Atangana} and \textit{S. İ. Araz}, Chaos Solitons Fractals 127, 257--271 (2019; Zbl 1448.65277) Full Text: DOI
Zhao, Jingjun; Long, Teng; Xu, Yang Super implicit multistep collocation methods for weakly singular Volterra integral equations. (English) Zbl 07267471 Numer. Math., Theory Methods Appl. 12, No. 4, 1039-1065 (2019). MSC: 65R20 PDF BibTeX XML Cite \textit{J. Zhao} et al., Numer. Math., Theory Methods Appl. 12, No. 4, 1039--1065 (2019; Zbl 07267471) Full Text: DOI
Zheng, Weishan Chebyshev spectral-collocation method for proportional Volterra integral equation. (Chinese. English summary) Zbl 07266306 Acta Math. Appl. Sin. 42, No. 3, 400-409 (2019). MSC: 65R20 PDF BibTeX XML Cite \textit{W. Zheng}, Acta Math. Appl. Sin. 42, No. 3, 400--409 (2019; Zbl 07266306)
Sang, Xiaoyan; Jiang, Guo; Wu, Jieheng; Lu, Yiyang Numerical solution of nonlinear stochastic Itô-Volterra integral equations by block pulse functions. (English) Zbl 1449.65008 Math. Appl. 32, No. 4, 935-946 (2019). MSC: 65C30 65R20 PDF BibTeX XML Cite \textit{X. Sang} et al., Math. Appl. 32, No. 4, 935--946 (2019; Zbl 1449.65008)
Fayazova, Z. K. Boundary control of the heat transfer process in the space. (English. Russian original) Zbl 1447.93147 Russ. Math. 63, No. 12, 71-79 (2019); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 12, 82-90 (2019). MSC: 93C20 35K20 44A10 80A19 PDF BibTeX XML Cite \textit{Z. K. Fayazova}, Russ. Math. 63, No. 12, 71--79 (2019; Zbl 1447.93147); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2019, No. 12, 82--90 (2019) Full Text: DOI
McLean, William; Mustapha, Kassem; Ali, Raed; Knio, Omar Well-posedness of time-fractional advection-diffusion-reaction equations. (English) Zbl 1439.35542 Fract. Calc. Appl. Anal. 22, No. 4, 918-944 (2019). MSC: 35R11 35A01 35A02 35B45 35D30 35K57 35Q84 PDF BibTeX XML Cite \textit{W. McLean} et al., Fract. Calc. Appl. Anal. 22, No. 4, 918--944 (2019; Zbl 1439.35542) Full Text: DOI
Shah, R.; Zada, A. Hyers-Ulam-Rassias stability of impulsive Volterra integral equation via a fixed point approach. (English) Zbl 07179153 J. Linear Topol. Algebra 8, No. 4, 219-227 (2019). MSC: 45D05 47H10 39B82 PDF BibTeX XML Cite \textit{R. Shah} and \textit{A. Zada}, J. Linear Topol. Algebra 8, No. 4, 219--227 (2019; Zbl 07179153) Full Text: Link
Lienert, Matthias; Tumulka, Roderich A new class of Volterra-type integral equations from relativistic quantum physics. (English) Zbl 1445.45005 J. Integral Equations Appl. 31, No. 4, 535-569 (2019). MSC: 45D05 45E99 81Q40 PDF BibTeX XML Cite \textit{M. Lienert} and \textit{R. Tumulka}, J. Integral Equations Appl. 31, No. 4, 535--569 (2019; Zbl 1445.45005) Full Text: DOI Euclid
Gal, Sorin G. Volterra-Choquet integral equations. (English) Zbl 1443.45002 J. Integral Equations Appl. 31, No. 4, 495-504 (2019). Reviewer: Anna Karczewska (Zielona Gora) MSC: 45D05 45G10 45L05 28A12 28A25 PDF BibTeX XML Cite \textit{S. G. Gal}, J. Integral Equations Appl. 31, No. 4, 495--504 (2019; Zbl 1443.45002) Full Text: DOI Euclid
Migda, Malgorzata; Dutkiewicz, Aldona Asymptotic behavior of solutions of second-order difference equations of Volterra type. (English) Zbl 1430.39001 Turk. J. Math. 43, No. 5, 2203-2217 (2019). MSC: 39A10 39A22 39A12 45D05 PDF BibTeX XML Cite \textit{M. Migda} and \textit{A. Dutkiewicz}, Turk. J. Math. 43, No. 5, 2203--2217 (2019; Zbl 1430.39001) Full Text: Link
Gerhold, Stefan; Gerstenecker, Christoph; Pinter, Arpad Moment explosions in the rough Heston model. (English) Zbl 1432.91123 Decis. Econ. Finance 42, No. 2, 575-608 (2019). MSC: 91G20 91B70 45D05 PDF BibTeX XML Cite \textit{S. Gerhold} et al., Decis. Econ. Finance 42, No. 2, 575--608 (2019; Zbl 1432.91123) Full Text: DOI
Qi, Ruisheng; Lin, Qiu Time-stepping error bound for a stochastic parabolic Volterra equation disturbed by fractional Brownian motions. (English) Zbl 1449.65256 Numer. Math., Theory Methods Appl. 12, No. 3, 778-796 (2019). MSC: 65M60 65M15 65C30 60G22 33E12 35B65 60H15 35R60 35R11 26A33 45D05 PDF BibTeX XML Cite \textit{R. Qi} and \textit{Q. Lin}, Numer. Math., Theory Methods Appl. 12, No. 3, 778--796 (2019; Zbl 1449.65256) Full Text: DOI
Zhao, Xiaoxu; Li, Meiyi; Lv, Xueqin An algorithm for solving \(m\)th-order nonlinear Volterra-Fredholm integro-differential equations. (Chinese. English summary) Zbl 1449.65170 Math. Pract. Theory 49, No. 14, 208-216 (2019). MSC: 65L60 65R20 45J05 45B05 45D05 PDF BibTeX XML Cite \textit{X. Zhao} et al., Math. Pract. Theory 49, No. 14, 208--216 (2019; Zbl 1449.65170)
Ren, Jianlong Reconstruction of unknown surface heat flux from an internal temperature history. (Chinese. English summary) Zbl 1449.35245 J. Shandong Univ., Nat. Sci. 54, No. 9, 83-90, 97 (2019). MSC: 35K05 35R30 PDF BibTeX XML Cite \textit{J. Ren}, J. Shandong Univ., Nat. Sci. 54, No. 9, 83--90, 97 (2019; Zbl 1449.35245) Full Text: DOI
Moosavi Noori, Seyyedeh Roodabeh; Taghizadeh, Nasir Application of reduced differential transform method for solving two-dimensional Volterra integral equations of the second kind. (English) Zbl 1440.45003 Appl. Appl. Math. 14, No. 2, 1003-1019 (2019). MSC: 45D05 45G10 65R20 PDF BibTeX XML Cite \textit{S. R. Moosavi Noori} and \textit{N. Taghizadeh}, Appl. Appl. Math. 14, No. 2, 1003--1019 (2019; Zbl 1440.45003) Full Text: Link
Asadpour, Sasan; Hosseinzadeh, Hassan; Yazdani, AllahBakhsh Numerical solution of the Lane-Emden equations with moving least squares method. (English) Zbl 07153920 Appl. Appl. Math. 14, No. 2, 762-776 (2019). MSC: 34K28 65L05 PDF BibTeX XML Cite \textit{S. Asadpour} et al., Appl. Appl. Math. 14, No. 2, 762--776 (2019; Zbl 07153920) Full Text: Link
Babenko, V. Calculus and nonlinear integral equations for functions with values in \(L\)-spaces. (English) Zbl 1449.45009 Anal. Math. 45, No. 4, 727-755 (2019). MSC: 45G10 28B20 PDF BibTeX XML Cite \textit{V. Babenko}, Anal. Math. 45, No. 4, 727--755 (2019; Zbl 1449.45009) Full Text: DOI
Lizama, Carlos; Murillo-Arcila, Marina Maximal \(\ell_p\)-regularity for discrete time Volterra equations with delay. (English) Zbl 1439.45002 J. Difference Equ. Appl. 25, No. 9-10, 1344-1362 (2019). MSC: 45D05 35R09 39A06 39A12 PDF BibTeX XML Cite \textit{C. Lizama} and \textit{M. Murillo-Arcila}, J. Difference Equ. Appl. 25, No. 9--10, 1344--1362 (2019; Zbl 1439.45002) Full Text: DOI
Talaei, Y.; Shahmorad, S.; Mokhtary, P. A new recursive formulation of the Tau method for solving linear Abel-Volterra integral equations and its application to fractional differential equations. (English) Zbl 1432.65202 Calcolo 56, No. 4, Paper No. 50, 29 p. (2019). Reviewer: Kai Diethelm (Schweinfurt) MSC: 65R20 45D05 PDF BibTeX XML Cite \textit{Y. Talaei} et al., Calcolo 56, No. 4, Paper No. 50, 29 p. (2019; Zbl 1432.65202) Full Text: DOI