Yang, Yue; Meng, Fanwei A kind of stricter Hyers-Ulam stability of second order linear differential equations of Carathéodory type. (English) Zbl 07317515 Appl. Math. Lett. 115, Article ID 106946, 8 p. (2021). MSC: 65 35 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{F. Meng}, Appl. Math. Lett. 115, Article ID 106946, 8 p. (2021; Zbl 07317515) Full Text: DOI
Anderson, Douglas R.; Onitsuka, Masakazu Best constant for Hyers-Ulam stability of two step sizes linear difference equations. (English) Zbl 07316425 J. Math. Anal. Appl. 496, No. 2, Article ID 124807, 18 p. (2021). MSC: 39 65 PDF BibTeX XML Cite \textit{D. R. Anderson} and \textit{M. Onitsuka}, J. Math. Anal. Appl. 496, No. 2, Article ID 124807, 18 p. (2021; Zbl 07316425) Full Text: DOI
Guan, Yi; Fečkan, Michal; Wang, Jinrong Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. (English) Zbl 07314905 Discrete Contin. Dyn. Syst. 41, No. 3, 1157-1176 (2021). MSC: 34C25 PDF BibTeX XML Cite \textit{Y. Guan} et al., Discrete Contin. Dyn. Syst. 41, No. 3, 1157--1176 (2021; Zbl 07314905) Full Text: DOI
Govindan, Vediyappan; Hammachukiattikul, Porpattama; Rajchakit, Grienggrai; Gunasekaran, Nallappan; Vadivel, R. A new approach to Hyers-Ulam stability of \(r\)-variable quadratic functional equations. (English) Zbl 07311225 J. Funct. Spaces 2021, Article ID 6628733, 10 p. (2021). MSC: 39B82 47H10 PDF BibTeX XML Cite \textit{V. Govindan} et al., J. Funct. Spaces 2021, Article ID 6628733, 10 p. (2021; Zbl 07311225) Full Text: DOI
Choi, Yemon; Ghandehari, Mahya; Pham, Hung Le Stability of characters and filters for weighted semilattices. (English) Zbl 07310708 Semigroup Forum 102, No. 1, 86-103 (2021). MSC: 20M PDF BibTeX XML Cite \textit{Y. Choi} et al., Semigroup Forum 102, No. 1, 86--103 (2021; Zbl 07310708) Full Text: DOI
Murugan, Veerapazham; Palanivel, Rajendran Iterative roots of continuous functions and Hyers-Ulam stability. (English) Zbl 07310556 Aequationes Math. 95, No. 1, 107-124 (2021). MSC: 39B12 39A30 26A18 26A48 65H04 PDF BibTeX XML Cite \textit{V. Murugan} and \textit{R. Palanivel}, Aequationes Math. 95, No. 1, 107--124 (2021; Zbl 07310556) Full Text: DOI
Zhou, Yu; Zhang, Zihou; Liu, Chunyan Hyers-Ulam stability of bijective \(\varepsilon\)-isometries between Hausdorff metric spaces of compact convex subsets. (English) Zbl 07310550 Aequationes Math. 95, No. 1, 1-12 (2021). MSC: 46B04 41A65 46B20 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Aequationes Math. 95, No. 1, 1--12 (2021; Zbl 07310550) Full Text: DOI
Ahmadova, Arzu; Mahmudov, Nazim I. Langevin differential equations with general fractional orders and their applications to electric circuit theory. (English) Zbl 07305224 J. Comput. Appl. Math. 388, Article ID 113299, 20 p. (2021). MSC: 34A08 34A12 34A30 34A25 33E12 34D10 PDF BibTeX XML Cite \textit{A. Ahmadova} and \textit{N. I. Mahmudov}, J. Comput. Appl. Math. 388, Article ID 113299, 20 p. (2021; Zbl 07305224) Full Text: DOI
Baias, Alina Ramona; Popa, Dorian On the best Ulam constant of a higher order linear difference equation. (English) Zbl 07300219 Bull. Sci. Math. 166, Article ID 102928, 13 p. (2021). MSC: 39A30 39A06 PDF BibTeX XML Cite \textit{A. R. Baias} and \textit{D. Popa}, Bull. Sci. Math. 166, Article ID 102928, 13 p. (2021; Zbl 07300219) Full Text: DOI
Gnacik, Michał; Guzik, Marcin; Kania, Tomasz Approximate modularity: Kalton’s constant is not smaller than 3. (English) Zbl 07299108 Proc. Am. Math. Soc. 149, No. 2, 661-669 (2021). MSC: 28A60 39B82 90C27 94C10 PDF BibTeX XML Cite \textit{M. Gnacik} et al., Proc. Am. Math. Soc. 149, No. 2, 661--669 (2021; Zbl 07299108) Full Text: DOI
Peppo, Catherine Asymptotic Hyers-Ulam stability or superstability by unilateral perturbations on the concavity side for generalized linear equations. (English) Zbl 07297366 J. Convex Anal. 28, No. 1, 143-156 (2021). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 39B62 26A51 PDF BibTeX XML Cite \textit{C. Peppo}, J. Convex Anal. 28, No. 1, 143--156 (2021; Zbl 07297366) Full Text: Link
Ahmadova, Arzu; Mahmudov, Nazim I. Ulam-Hyers stability of Caputo type fractional stochastic neutral differential equations. (English) Zbl 07290499 Stat. Probab. Lett. 168, Article ID 108949, 6 p. (2021). MSC: 34A08 34F05 34A09 34D10 60J65 PDF BibTeX XML Cite \textit{A. Ahmadova} and \textit{N. I. Mahmudov}, Stat. Probab. Lett. 168, Article ID 108949, 6 p. (2021; Zbl 07290499) Full Text: DOI
Liu, Li; Dong, Qixiang; Li, Gang Exact solutions and Hyers-Ulam stability for fractional oscillation equations with pure delay. (English) Zbl 07281283 Appl. Math. Lett. 112, Article ID 106666, 7 p. (2021). MSC: 34K37 34K06 34K27 PDF BibTeX XML Cite \textit{L. Liu} et al., Appl. Math. Lett. 112, Article ID 106666, 7 p. (2021; Zbl 07281283) Full Text: DOI
Tomar, Shalini; Hooda, Navneet On stability of \(\alpha\)-radical reciprocal functional equation. (English) Zbl 07246096 Electron. J. Math. Analysis Appl. 9, No. 1, 293-301 (2021). MSC: 39B82 39B52 46H25 PDF BibTeX XML Cite \textit{S. Tomar} and \textit{N. Hooda}, Electron. J. Math. Analysis Appl. 9, No. 1, 293--301 (2021; Zbl 07246096) Full Text: Link
Buşe, Constantin; Lupulescu, Vasile; O’Regan, Donal Hyers-Ulam stability for equations with differences and differential equations with time-dependent and periodic coefficients. (English) Zbl 07316330 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2175-2188 (2020). MSC: 12H20 34D09 39B82 PDF BibTeX XML Cite \textit{C. Buşe} et al., Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 5, 2175--2188 (2020; Zbl 07316330) Full Text: DOI
Khan, Hasib; Tunc, Cemil; Khan, Aziz Stability results and existence theorems for nonlinear delay-fractional differential equations with \(\varphi_p^*\)-operator. (English) Zbl 07315111 J. Appl. Anal. Comput. 10, No. 2, 584-597 (2020). MSC: 34K37 34K10 34K27 47N20 PDF BibTeX XML Cite \textit{H. Khan} et al., J. Appl. Anal. Comput. 10, No. 2, 584--597 (2020; Zbl 07315111) Full Text: DOI
Maghsoudi, Mohammad; Bodaghi, Abasalt On the stability of multi \(m\)-Jensen mappings. (English) Zbl 07314442 Casp. J. Math. Sci. 9, No. 2, 199-209 (2020). MSC: 39B52 39B72 39B82 46B03 PDF BibTeX XML Cite \textit{M. Maghsoudi} and \textit{A. Bodaghi}, Casp. J. Math. Sci. 9, No. 2, 199--209 (2020; Zbl 07314442) Full Text: DOI
Salim, Krim; Abbas, Saïd; Benchohra, Mouffak; Darwish, Mohamed Abdella Boundary value problem for implicit Caputo-Fabrizio fractional differential equations. (English) Zbl 07312929 Int. J. Difference Equ. 15, No. 2, 493-510 (2020). MSC: 34A08 34G20 PDF BibTeX XML Cite \textit{K. Salim} et al., Int. J. Difference Equ. 15, No. 2, 493--510 (2020; Zbl 07312929) Full Text: Link
Anderson, Douglas R.; Jennissen, Andrew J.; Montplaisir, Cole J. Hyers-Ulam stability for a continuous atime scale with discrete uniform jumps. (English) Zbl 07312913 Int. J. Difference Equ. 15, No. 2, 259-279 (2020). MSC: 34N05 34A30 34D20 39A06 39A30 39A45 PDF BibTeX XML Cite \textit{D. R. Anderson} et al., Int. J. Difference Equ. 15, No. 2, 259--279 (2020; Zbl 07312913) Full Text: Link
Reinfelds, Andrejs; Christian, Shraddha Hyers-Ulam stability of Volterra type integral equations on time scales. (English) Zbl 07312891 Adv. Dyn. Syst. Appl. 15, No. 1, 39-48 (2020). MSC: 45D05 45G10 34N05 PDF BibTeX XML Cite \textit{A. Reinfelds} and \textit{S. Christian}, Adv. Dyn. Syst. Appl. 15, No. 1, 39--48 (2020; Zbl 07312891) Full Text: Link
Govindan, Vediyappan; Lee, Jung-Rye; Pinelas, Sandra; Noorsaba, Abdul Rahim; Balasubramanian, Ganapathy Solution and stability of an \(n\)-variable additive functional equation. (English) Zbl 07312270 Korean J. Math. 28, No. 3, 613-621 (2020). MSC: 39B52 46H25 PDF BibTeX XML Cite \textit{V. Govindan} et al., Korean J. Math. 28, No. 3, 613--621 (2020; Zbl 07312270) Full Text: DOI
Aruldass, Antony Raj; Pachaiyappan, Divyakumari; Lee, Jung-Rye Duotrigintic functional equation and its stability in Banach spaces. (English) Zbl 07312264 Korean J. Math. 28, No. 3, 525-537 (2020). MSC: 39B52 PDF BibTeX XML Cite \textit{A. R. Aruldass} et al., Korean J. Math. 28, No. 3, 525--537 (2020; Zbl 07312264) Full Text: DOI
Almalahi, M. A.; Abdo, M. S.; Panchal, S. K. Periodic boundary value problems for fractional implicit differential equations involving Hilfer fractional derivative. (English) Zbl 07311940 Probl. Anal. Issues Anal. 9(27), No. 2, 16-44 (2020). Reviewer: Syed Abbas (Mandi) MSC: 34A08 34B15 34D10 47H10 33E12 PDF BibTeX XML Cite \textit{M. A. Almalahi} et al., Probl. Anal. Issues Anal. 9(27), No. 2, 16--44 (2020; Zbl 07311940) Full Text: DOI MNR
Chen, Yu; O’Regan, D.; Wang, JinRong Existence and stability of solutions for linear and nonlinear Stieltjes differential equations. (English) Zbl 07311141 Quaest. Math. 43, No. 11, 1613-1638 (2020). MSC: 34A08 34A12 34B10 34D10 PDF BibTeX XML Cite \textit{Y. Chen} et al., Quaest. Math. 43, No. 11, 1613--1638 (2020; Zbl 07311141) Full Text: DOI
Blaga, Florina; Mesaroş, Laura; Popa, Dorian; Pugna, Georgiana; Raşa, Ioan Bounds for solutions of linear differential equations and Ulam stability. (English) Zbl 07307829 Miskolc Math. Notes 21, No. 2, 653-664 (2020). MSC: 34D20 34D10 39B82 PDF BibTeX XML Cite \textit{F. Blaga} et al., Miskolc Math. Notes 21, No. 2, 653--664 (2020; Zbl 07307829) Full Text: DOI
Kheiryan, Alireza; Rezapour, Shahram On Hyers-Ulam stability of two singular fractional integro-differential equations. (English) Zbl 07303977 J. Adv. Math. Stud. 13, No. 3, 339-349 (2020). MSC: 45 PDF BibTeX XML Cite \textit{A. Kheiryan} and \textit{S. Rezapour}, J. Adv. Math. Stud. 13, No. 3, 339--349 (2020; Zbl 07303977) Full Text: Link
Gul, Rozi; Sarwar, Muhammad; Shah, Kamal; Abdeljawad, Thabet; Jarad, Fahd Qualitative analysis of implicit Dirichlet boundary value problem for Caputo-Fabrizio fractional differential equations. (English) Zbl 07300487 J. Funct. Spaces 2020, Article ID 4714032, 9 p. (2020). MSC: 35R11 35G30 PDF BibTeX XML Cite \textit{R. Gul} et al., J. Funct. Spaces 2020, Article ID 4714032, 9 p. (2020; Zbl 07300487) Full Text: DOI
Shammakh, Wafa; Alzumi, Hadeel Z.; AlQahtani, Bushra A. On more general fractional differential equations involving mixed generalized derivatives with nonlocal multipoint and generalized fractional integral boundary conditions. (English) Zbl 07300030 J. Funct. Spaces 2020, Article ID 3102142, 19 p. (2020). Reviewer: Krishnan Balachandran (Coimbatore) MSC: 34A08 34B10 47N20 PDF BibTeX XML Cite \textit{W. Shammakh} et al., J. Funct. Spaces 2020, Article ID 3102142, 19 p. (2020; Zbl 07300030) Full Text: DOI
Shah, Syed Omar; Zada, Akbar; Muzamil, Muzamil; Tayyab, Muhammad; Rizwan, Rizwan On the Bielecki-Ulam’s type stability results of first order non-linear impulsive delay dynamic systems on time scales. (English) Zbl 07299281 Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 98, 17 p. (2020). MSC: 34N05 34K27 34K45 47N20 PDF BibTeX XML Cite \textit{S. O. Shah} et al., Qual. Theory Dyn. Syst. 19, No. 3, Paper No. 98, 17 p. (2020; Zbl 07299281) Full Text: DOI
Villa-Morales, José Hyers-Ulam stability of a nonautonomous semilinear equation with fractional diffusion. (English) Zbl 07299079 Demonstr. Math. 53, 269-276 (2020). MSC: 35R11 35K58 35B20 35B35 45H05 47H10 PDF BibTeX XML Cite \textit{J. Villa-Morales}, Demonstr. Math. 53, 269--276 (2020; Zbl 07299079) Full Text: DOI
Shen, Yonghong; Li, Yongjin The general solution and Ulam stability of second order linear dynamic equations on time scales. (English) Zbl 07295445 J. Math. Res. Appl. 40, No. 5, 493-506 (2020). MSC: 34D20 34N05 PDF BibTeX XML Cite \textit{Y. Shen} and \textit{Y. Li}, J. Math. Res. Appl. 40, No. 5, 493--506 (2020; Zbl 07295445) Full Text: DOI
Wang, Chun; Xu, Tianzhou Hyers-Ulam-Rassias stability of a mixed type cubic-quartic functional equation in 2-Banach spaces. (Chinese. English summary) Zbl 07294865 Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 352-368 (2020). MSC: 39B82 39B72 39B52 PDF BibTeX XML Cite \textit{C. Wang} and \textit{T. Xu}, Acta Math. Sci., Ser. A, Chin. Ed. 40, No. 2, 352--368 (2020; Zbl 07294865)
Vivek, D.; Elsayed, E. M.; Kanagarajan, K. Existence and Ulam stability results for a class of boundary value problem of neutral pantograph equations with complex order. (English) Zbl 07293751 S\(\vec{\text{e}}\)MA J. 77, No. 3, 243-256 (2020). MSC: 34K37 34K27 34K10 34K40 PDF BibTeX XML Cite \textit{D. Vivek} et al., S\(\vec{\text{e}}\)MA J. 77, No. 3, 243--256 (2020; Zbl 07293751) Full Text: DOI
Nabil, Tamer On nonlinear fractional neutral differential equation with the \(\psi\)-Caputo fractional derivative. (English) Zbl 1451.34102 J. Math. Appl. 43, 99-112 (2020). MSC: 34K37 47N20 PDF BibTeX XML Cite \textit{T. Nabil}, J. Math. Appl. 43, 99--112 (2020; Zbl 1451.34102) Full Text: DOI
Qiu, Wanzheng; Wang, JinRong; O’Regan, Donal Existence and Ulam stability of solutions for conformable impulsive differential equations. (English) Zbl 07290383 Bull. Iran. Math. Soc. 46, No. 6, 1613-1637 (2020). MSC: 34A08 34A30 34A37 34D10 PDF BibTeX XML Cite \textit{W. Qiu} et al., Bull. Iran. Math. Soc. 46, No. 6, 1613--1637 (2020; Zbl 07290383) Full Text: DOI
Govindan, Vediyappan; Park, Choonkil; Pinelas, Sandra; Rassias, Themistocles M. Hyers-Ulam stability of an additive-quadratic functional equation. (English) Zbl 07289316 Cubo 22, No. 2, 233-255 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{V. Govindan} et al., Cubo 22, No. 2, 233--255 (2020; Zbl 07289316) Full Text: DOI
Ding, Yuanlin; Fečkan, Michal; Wang, Jinrong Stability for conformable impulsive differential equations. (English) Zbl 07288635 Electron. J. Differ. Equ. 2020, Paper No. 118, 19 p. (2020). Reviewer: Eric R. Kaufmann (Little Rock) MSC: 34A37 34A08 34D20 34D10 PDF BibTeX XML Cite \textit{Y. Ding} et al., Electron. J. Differ. Equ. 2020, Paper No. 118, 19 p. (2020; Zbl 07288635) Full Text: Link
Baias, Alina Ramona; Popa, Dorian On Ulam stability of a third order linear difference equation in Banach spaces. (English) Zbl 07286378 Aequationes Math. 94, No. 6, 1151-1170 (2020). MSC: 39A30 39A06 39B82 PDF BibTeX XML Cite \textit{A. R. Baias} and \textit{D. Popa}, Aequationes Math. 94, No. 6, 1151--1170 (2020; Zbl 07286378) Full Text: DOI
Buică, A.; Rus, I. A.; Şerban, M. A. Zero point principle of ball-near identity operators and applications to implicit operator problem. (English) Zbl 07282699 Fixed Point Theory 21, No. 1, 79-92 (2020). MSC: 47H10 47J07 65F10 26B10 58C15 PDF BibTeX XML Cite \textit{A. Buică} et al., Fixed Point Theory 21, No. 1, 79--92 (2020; Zbl 07282699) Full Text: Link
Mali, Ashwini D.; Kucche, Kishor D. Nonlocal boundary value problem for generalized hilfer implicit fractional differential equations. (English) Zbl 07279007 Math. Methods Appl. Sci. 43, No. 15, 8608-8631 (2020). MSC: 34A08 34A09 34B10 34D10 34A40 47N20 PDF BibTeX XML Cite \textit{A. D. Mali} and \textit{K. D. Kucche}, Math. Methods Appl. Sci. 43, No. 15, 8608--8631 (2020; Zbl 07279007) Full Text: DOI
Zhang, Wei; Liu, Wenbin Existence and Ulam’s type stability results for a class of fractional boundary value problems on a star graph. (English) Zbl 07279005 Math. Methods Appl. Sci. 43, No. 15, 8568-8594 (2020). MSC: 34A08 34B45 34D10 47N20 PDF BibTeX XML Cite \textit{W. Zhang} and \textit{W. Liu}, Math. Methods Appl. Sci. 43, No. 15, 8568--8594 (2020; Zbl 07279005) Full Text: DOI
Park, Choonkil; Jin, Yuanfeng; Shin, Dong Yun; Zhang, Xiaohong; Govindan, Vediyappan Permuting triderivations and permuting trihomomorphisms in Banach algebras. (English) Zbl 1452.39006 Rocky Mt. J. Math. 50, No. 5, 1793-1806 (2020). MSC: 39B52 39B62 39B82 46L57 47B47 17A40 PDF BibTeX XML Cite \textit{C. Park} et al., Rocky Mt. J. Math. 50, No. 5, 1793--1806 (2020; Zbl 1452.39006) Full Text: DOI Euclid
Pinelas, Sandra; Govindan, V.; Tamilvanan, K.; Baskaran, S. Intuitionistic fuzzy stability of an finite dimensional cubic functional equation. (English) Zbl 1453.39023 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer. Springer Proc. Math. Stat. 333, 713-731 (2020). MSC: 39B82 54A40 PDF BibTeX XML Cite \textit{S. Pinelas} et al., Springer Proc. Math. Stat. 333, 713--731 (2020; Zbl 1453.39023) Full Text: DOI
Reinfelds, Andrejs; Christian, Shraddha Hyers-Ulam stability of a nonlinear Volterra integral equation on time scales. (English) Zbl 07271996 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer (ISBN 978-3-030-56322-6/hbk; 978-3-030-56323-3/ebook). Springer Proceedings in Mathematics & Statistics 333, 123-131 (2020). MSC: 45 39B82 PDF BibTeX XML Cite \textit{A. Reinfelds} and \textit{S. Christian}, in: Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1--5, 2019. Cham: Springer. 123--131 (2020; Zbl 07271996) Full Text: DOI
Petruşel, Adrian; Petruşel, Gabriela; Yao, Jen-Chih Multi-valued graph contraction principle with applications. (English) Zbl 07271707 Optimization 69, No. 7-8, 1541-1556 (2020). MSC: 47H10 49J53 54H25 PDF BibTeX XML Cite \textit{A. Petruşel} et al., Optimization 69, No. 7--8, 1541--1556 (2020; Zbl 07271707) Full Text: DOI
Ciepliński, Krzysztof On Ulam stability of a functional equation. (English) Zbl 1451.39024 Result. Math. 75, No. 4, Paper No. 151, 10 p. (2020). MSC: 39B82 39B52 39B72 PDF BibTeX XML Cite \textit{K. Ciepliński}, Result. Math. 75, No. 4, Paper No. 151, 10 p. (2020; Zbl 1451.39024) Full Text: DOI
Zada, Akbar; Pervaiz, Bakhtawar; Alzabut, Jehad; Shah, Syed Omar Further results on Ulam stability for a system of first-order nonsingular delay differential equations. (English) Zbl 07271201 Demonstr. Math. 53, 225-235 (2020). MSC: 34K27 34K20 PDF BibTeX XML Cite \textit{A. Zada} et al., Demonstr. Math. 53, 225--235 (2020; Zbl 07271201) Full Text: DOI
Abdo, Mohammed S.; Thabet, Sabri T. M.; Ahmad, Bashir The existence and Ulam-Hyers stability results for \(\psi \)-Hilfer fractional integrodifferential equations. (English) Zbl 07270936 J. Pseudo-Differ. Oper. Appl. 11, No. 4, 1757-1780 (2020). MSC: 45 47H10 PDF BibTeX XML Cite \textit{M. S. Abdo} et al., J. Pseudo-Differ. Oper. Appl. 11, No. 4, 1757--1780 (2020; Zbl 07270936) Full Text: DOI
Anderson, Douglas R.; Onitsuka, Masakazu Hyers-Ulam stability and best constant for Cayley \(h\)-difference equations. (English) Zbl 07270615 Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4207-4222 (2020). MSC: 39A30 39A13 39B82 PDF BibTeX XML Cite \textit{D. R. Anderson} and \textit{M. Onitsuka}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 6, 4207--4222 (2020; Zbl 07270615) Full Text: DOI
Falihi, S.; Bodaghi, A.; Shojaee, B. A characterization of multi-mixed additive-quadratic mappings and a fixed point application. (English) Zbl 1451.39025 J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 4, 235-247 (2020) and Izv. Nats. Akad. Nauk Armen., Mat. 55, No. 4, 31-46 (2020). MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{S. Falihi} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 55, No. 4, 235--247 (2020; Zbl 1451.39025) Full Text: DOI
Fukutaka, Ryuma; Onitsuka, Masakazu Best constant for Ulam stability of Hill’s equations. (English) Zbl 07267889 Bull. Sci. Math. 163, Article ID 102888, 22 p. (2020). Reviewer: Rodica Luca (Iaşi) MSC: 34D10 34A12 34A30 34B30 PDF BibTeX XML Cite \textit{R. Fukutaka} and \textit{M. Onitsuka}, Bull. Sci. Math. 163, Article ID 102888, 22 p. (2020; Zbl 07267889) Full Text: DOI
Yang, Yue; Meng, Fanwei Hyers-Ulam stability of linear differential equations. (Chinese. English summary) Zbl 07266977 J. Qufu Norm. Univ., Nat. Sci. 46, No. 2, 15-18 (2020). MSC: 34K20 34K06 PDF BibTeX XML Cite \textit{Y. Yang} and \textit{F. Meng}, J. Qufu Norm. Univ., Nat. Sci. 46, No. 2, 15--18 (2020; Zbl 07266977) Full Text: DOI
Macías-Díaz, J. E. Fractional generalization of the Fermi-Pasta-Ulam-Tsingou media and theoretical analysis of an explicit variational scheme. (English) Zbl 1452.65202 Commun. Nonlinear Sci. Numer. Simul. 88, Article ID 105158, 22 p. (2020). MSC: 65M22 65M12 65M15 35R11 82C20 82D25 PDF BibTeX XML Cite \textit{J. E. Macías-Díaz}, Commun. Nonlinear Sci. Numer. Simul. 88, Article ID 105158, 22 p. (2020; Zbl 1452.65202) Full Text: DOI
Anderson, Douglas R.; Onitsuka, Masakazu; Rassias, John Michael Best constant for Ulam stability of first-order \(h\)-difference equations with periodic coefficient. (English) Zbl 1451.39014 J. Math. Anal. Appl. 491, No. 2, Article ID 124363, 14 p. (2020). MSC: 39A30 39B82 PDF BibTeX XML Cite \textit{D. R. Anderson} et al., J. Math. Anal. Appl. 491, No. 2, Article ID 124363, 14 p. (2020; Zbl 1451.39014) Full Text: DOI
Khan, Hasib; Tunc, Cemil; Khan, Aziz Green function’s properties and existence theorems for nonlinear singular-delay-fractional differential equations. (English) Zbl 07264123 Discrete Contin. Dyn. Syst., Ser. S 13, No. 9, 2475-2487 (2020). Reviewer: Rodica Luca (Iaşi) MSC: 34A08 34B10 34B16 34B18 PDF BibTeX XML Cite \textit{H. Khan} et al., Discrete Contin. Dyn. Syst., Ser. S 13, No. 9, 2475--2487 (2020; Zbl 07264123) Full Text: DOI
Bodaghi, Abasalt; Pinelas, Sandra; Vediyappan, Govindan; Gunesekaran, Kokila An \(n\)-dimensional cubic functional equation and its Hyers-Ulam stability. (English) Zbl 1450.39011 J. Anal. 28, No. 3, 663-682 (2020). MSC: 39B52 39B72 39B82 54A40 PDF BibTeX XML Cite \textit{A. Bodaghi} et al., J. Anal. 28, No. 3, 663--682 (2020; Zbl 1450.39011) Full Text: DOI
Moşneguţu, Bianca; Măduţǎ, Alexandra Ulam stability in real inner-product spaces. (English) Zbl 07259306 Constr. Math. Anal. 3, No. 3, 113-115 (2020). MSC: 39B72 39B82 PDF BibTeX XML Cite \textit{B. Moşneguţu} and \textit{A. Măduţǎ}, Constr. Math. Anal. 3, No. 3, 113--115 (2020; Zbl 07259306) Full Text: DOI
Başcı, Yasemin; Öğrekçi, Süleyman; Mısır, Adil On Ulam’s type stability criteria for fractional integral equations including Hadamard type singular kernel. (English) Zbl 07259237 Turk. J. Math. 44, No. 4, 1498-1509 (2020). MSC: 45M10 34A08 26A33 PDF BibTeX XML Cite \textit{Y. Başcı} et al., Turk. J. Math. 44, No. 4, 1498--1509 (2020; Zbl 07259237) Full Text: DOI
Kucche, Kishor D.; Kharade, Jyoti P. Analysis of impulsive \(\varphi\)-Hilfer fractional differential equations. (English) Zbl 1453.34009 Mediterr. J. Math. 17, No. 5, Paper No. 163, 23 p. (2020). MSC: 34A08 34A12 34A37 34D10 47N20 PDF BibTeX XML Cite \textit{K. D. Kucche} and \textit{J. P. Kharade}, Mediterr. J. Math. 17, No. 5, Paper No. 163, 23 p. (2020; Zbl 1453.34009) Full Text: DOI
Lee, Yang-Hi; Jung, Soon-Mo Generalized Hyers-Ulam stability of some cubic-quadratic-additive type functional equations. (English) Zbl 1450.39018 Kyungpook Math. J. 60, No. 1, 133-144 (2020). Reviewer: Eszter Gselmann (Debrecen) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, Kyungpook Math. J. 60, No. 1, 133--144 (2020; Zbl 1450.39018) Full Text: DOI
Ramdoss, Murali; Pachaiyappan, Divyakumari; Dutta, Hemen Euler-Lagrange radical functional equations with solution and stability. (English) Zbl 07254904 Miskolc Math. Notes 21, No. 1, 351-365 (2020). MSC: 39B52 39B72 39B82 46B03 PDF BibTeX XML Cite \textit{M. Ramdoss} et al., Miskolc Math. Notes 21, No. 1, 351--365 (2020; Zbl 07254904) Full Text: DOI
Coroian, Iulia Fixed point and extended coupled fixed point theorems for multi-valued contractions with respect to the Pompeiu functional. (English) Zbl 07254889 Miskolc Math. Notes 21, No. 1, 143-160 (2020). MSC: 47H10 54H25 PDF BibTeX XML Cite \textit{I. Coroian}, Miskolc Math. Notes 21, No. 1, 143--160 (2020; Zbl 07254889) Full Text: DOI
Haddadi, M. Ternary quadratic Pompeiu on ternary Banach algebras. (English) Zbl 1452.39009 Math. Sci., Springer 14, No. 2, 121-128 (2020). MSC: 39B72 39B82 46H05 PDF BibTeX XML Cite \textit{M. Haddadi}, Math. Sci., Springer 14, No. 2, 121--128 (2020; Zbl 1452.39009) Full Text: DOI
Ramzanpour, Elahe; Bodaghi, Abasalt; Gilani, Alireza Stability and hyperstability of multi-additive-cubic mappings in intuitionistic fuzzy normed spaces. (English) Zbl 1448.39048 Honam Math. J. 42, No. 2, 391-409 (2020). MSC: 39B82 39B52 39B72 47H10 54A40 PDF BibTeX XML Cite \textit{E. Ramzanpour} et al., Honam Math. J. 42, No. 2, 391--409 (2020; Zbl 1448.39048) Full Text: DOI
Paokanta, Siriluk; Shin, Dong Yun Quadratic \((\rho_1,\rho_2)\)-functional equation in fuzzy Banach spaces. (English) Zbl 1450.39013 J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 27, No. 1, 25-33 (2020). MSC: 39B52 46S40 47H10 39B62 26E50 47S40 PDF BibTeX XML Cite \textit{S. Paokanta} and \textit{D. Y. Shin}, J. Korean Soc. Math. Educ., Ser. B, Pure Appl. Math. 27, No. 1, 25--33 (2020; Zbl 1450.39013)
Kumar, Vipin; Malik, Muslim Existence and stability results of nonlinear fractional differential equations with nonlinear integral boundary condition on time scales. (English) Zbl 1452.34089 Appl. Appl. Math., Spec. Iss. 6, 129-145 (2020). MSC: 34N05 34A08 34B10 34D10 47N20 PDF BibTeX XML Cite \textit{V. Kumar} and \textit{M. Malik}, Appl. Appl. Math. , 129--145 (2020; Zbl 1452.34089) Full Text: Link
Benzarouala, Chaimaa; Oubbi, Lahbib Ulam-stability of a generalized linear functional equation, a fixed point approach. (English) Zbl 1448.39045 Aequationes Math. 94, No. 5, 989-1000 (2020). MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{C. Benzarouala} and \textit{L. Oubbi}, Aequationes Math. 94, No. 5, 989--1000 (2020; Zbl 1448.39045) Full Text: DOI
Lee, Yang-Hi; Jung, Soon-Mo Stability of some cubic-additive functional equations. (English) Zbl 1447.39021 Nonlinear Funct. Anal. Appl. 25, No. 1, 35-54 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Y.-H. Lee} and \textit{S.-M. Jung}, Nonlinear Funct. Anal. Appl. 25, No. 1, 35--54 (2020; Zbl 1447.39021) Full Text: Link
Bota, Monica-Felicia; Guran, Liliana; Petruşel, Adrian New fixed point theorems on \(b\)-metric spaces with applications to coupled fixed point theory. (English) Zbl 07240948 J. Fixed Point Theory Appl. 22, No. 3, Paper No. 74, 14 p. (2020). MSC: 47H10 54H25 46T99 PDF BibTeX XML Cite \textit{M.-F. Bota} et al., J. Fixed Point Theory Appl. 22, No. 3, Paper No. 74, 14 p. (2020; Zbl 07240948) Full Text: DOI
Zada, Akbar; Ali, Nasir; Riaz, Usman Ulam’s stability of multi-point implicit boundary value problems with non-instantaneous impulses. (English) Zbl 1450.34012 Boll. Unione Mat. Ital. 13, No. 3, 305-328 (2020). MSC: 34A08 34A09 34A37 34B10 47N20 34D10 PDF BibTeX XML Cite \textit{A. Zada} et al., Boll. Unione Mat. Ital. 13, No. 3, 305--328 (2020; Zbl 1450.34012) Full Text: DOI
Zada, Akbar; Pervaiz, Bakhtawar; Shah, Syed Omar; Xu, Jiafa Stability analysis of first-order impulsive nonautonomous system on timescales. (English) Zbl 1450.34073 Math. Methods Appl. Sci. 43, No. 8, 5097-5113 (2020). MSC: 34N05 34A37 34D10 37C60 47N20 PDF BibTeX XML Cite \textit{A. Zada} et al., Math. Methods Appl. Sci. 43, No. 8, 5097--5113 (2020; Zbl 1450.34073) Full Text: DOI
Wang, Zhihua Approximate quadratic functional inequality in \(\beta\)-homogeneous normed spaces. (English) Zbl 1449.39031 J. Math. Res. Appl. 40, No. 1, 26-32 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{Z. Wang}, J. Math. Res. Appl. 40, No. 1, 26--32 (2020; Zbl 1449.39031) Full Text: DOI
Liu, Jianhua; Meng, Qing On the stability of \( (\alpha, \beta)\)-derivations in cone Banach spaces. (English) Zbl 1449.39029 Acta Sci. Nat. Univ. Nankaiensis 53, No. 1, 41-47 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{J. Liu} and \textit{Q. Meng}, Acta Sci. Nat. Univ. Nankaiensis 53, No. 1, 41--47 (2020; Zbl 1449.39029)
Sokolowski, Dariusz Stability of \(n\)-th order Flett’s and Sahoo-Riedel’s points. (English) Zbl 1445.39021 Real Anal. Exch. 45, No. 2, 401-410 (2020). MSC: 39B82 26A24 26A06 PDF BibTeX XML Cite \textit{D. Sokolowski}, Real Anal. Exch. 45, No. 2, 401--410 (2020; Zbl 1445.39021) Full Text: DOI Euclid
Rizwan, Rizwan; Zada, Akbar Nonlinear impulsive Langevin equation with mixed derivatives. (English) Zbl 07228616 Math. Methods Appl. Sci. 43, No. 1, 427-442 (2020). MSC: 34 26A33 34A08 34B27 PDF BibTeX XML Cite \textit{R. Rizwan} and \textit{A. Zada}, Math. Methods Appl. Sci. 43, No. 1, 427--442 (2020; Zbl 07228616) Full Text: DOI
Noori, B.; Moghimi, M. B.; Khosravi, B.; Park, Choonkil Stability of some functional equations on bounded domains. (English) Zbl 1445.39020 J. Math. Inequal. 14, No. 2, 455-472 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{B. Noori} et al., J. Math. Inequal. 14, No. 2, 455--472 (2020; Zbl 1445.39020) Full Text: DOI
Hwang, Inho; Park, Choonkil Ulam stability of an additive-quadratic functional equation in Banach spaces. (English) Zbl 1445.39019 J. Math. Inequal. 14, No. 2, 421-436 (2020). MSC: 39B82 39B52 47H10 39B62 PDF BibTeX XML Cite \textit{I. Hwang} and \textit{C. Park}, J. Math. Inequal. 14, No. 2, 421--436 (2020; Zbl 1445.39019) Full Text: DOI
Vestfrid, Igor A. Non-surjective coarse version of the Banach-Stone theorem. (English) Zbl 07222416 Ann. Funct. Anal. 11, No. 3, 634-642 (2020). MSC: 46B04 46B25 46E15 41A65 PDF BibTeX XML Cite \textit{I. A. Vestfrid}, Ann. Funct. Anal. 11, No. 3, 634--642 (2020; Zbl 07222416) Full Text: DOI
Kaskasem, P.; Klin-eam, C. Approximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in \(C^*\)-ternary algebras. (English) Zbl 1442.39030 J. Linear Topol. Algebra 9, No. 1, 1-15 (2020). MSC: 39B52 39B82 47H10 PDF BibTeX XML Cite \textit{P. Kaskasem} and \textit{C. Klin-eam}, J. Linear Topol. Algebra 9, No. 1, 1--15 (2020; Zbl 1442.39030) Full Text: Link
Liu, Kui; Wang, JinRong; Zhou, Yong; O’Regan, Donal Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel. (English) Zbl 1434.34014 Chaos Solitons Fractals 132, Article ID 109534, 8 p. (2020). MSC: 34A08 34D20 34A12 PDF BibTeX XML Cite \textit{K. Liu} et al., Chaos Solitons Fractals 132, Article ID 109534, 8 p. (2020; Zbl 1434.34014) Full Text: DOI
Baias, Alina Ramona; Popa, Dorian; Raşa, Ioan Ulam stability of a successive approximation equation. (English) Zbl 1443.39011 J. Fixed Point Theory Appl. 22, No. 2, Paper No. 41, 14 p. (2020). Reviewer: Vladimir Mityushev (Kraków) MSC: 39B12 39B82 39B52 47B39 PDF BibTeX XML Cite \textit{A. R. Baias} et al., J. Fixed Point Theory Appl. 22, No. 2, Paper No. 41, 14 p. (2020; Zbl 1443.39011) Full Text: DOI
Brzdęk, Janusz; Fošner, Ajda; Leśniak, Zbigniew A note on asymptotically approximate generalized Lie derivations. (English) Zbl 1441.16042 J. Fixed Point Theory Appl. 22, No. 2, Paper No. 40, 13 p. (2020). MSC: 16W25 46J20 PDF BibTeX XML Cite \textit{J. Brzdęk} et al., J. Fixed Point Theory Appl. 22, No. 2, Paper No. 40, 13 p. (2020; Zbl 1441.16042) Full Text: DOI
Brzdęk, Janusz; El-hady, El-sayed; Schwaiger, Jens Investigations on the Hyers-Ulam stability of generalized radical functional equations. (English) Zbl 1441.39029 Aequationes Math. 94, No. 3, 575-593 (2020). Reviewer: Mohammad Sal Moslehian (Mashhad) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{J. Brzdęk} et al., Aequationes Math. 94, No. 3, 575--593 (2020; Zbl 1441.39029) Full Text: DOI
Forti, Gian Luigi; Shulman, Ekaterina A comparison among methods for proving stability. (English) Zbl 1440.39019 Aequationes Math. 94, No. 3, 547-574 (2020). MSC: 39B82 47H10 PDF BibTeX XML Cite \textit{G. L. Forti} and \textit{E. Shulman}, Aequationes Math. 94, No. 3, 547--574 (2020; Zbl 1440.39019) Full Text: DOI
Zhang, Xuping; Xin, Zhen Existence, uniqueness and UHR stability of solutions to nonlinear ordinary differential equations with noninstantaneous impulses. (English) Zbl 07201333 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 2, 195-203 (2020). MSC: 35A01 35F25 37C75 PDF BibTeX XML Cite \textit{X. Zhang} and \textit{Z. Xin}, Int. J. Nonlinear Sci. Numer. Simul. 21, No. 2, 195--203 (2020; Zbl 07201333) Full Text: DOI
EL-Fassi, Iz-iddine; Kabbaj, Samir; Chahbi, Abdellatif Measure zero stability problem of a generalized quadratic functional equation. (English) Zbl 1440.39018 São Paulo J. Math. Sci. 14, No. 1, 301-311 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{I.-i. EL-Fassi} et al., São Paulo J. Math. Sci. 14, No. 1, 301--311 (2020; Zbl 1440.39018) Full Text: DOI
Kim, Hark-Mahn; Park, Jin-Seok; Shin, Hwan-Yong Approximation of quadratic Lie \(*\)-derivations on \(\rho\)-complete convex modular algebras. (English) Zbl 1434.17020 J. Math. Inequal. 14, No. 1, 121-134 (2020). MSC: 17B40 16W25 39B82 PDF BibTeX XML Cite \textit{H.-M. Kim} et al., J. Math. Inequal. 14, No. 1, 121--134 (2020; Zbl 1434.17020) Full Text: DOI
Saifia, O.; Boucenna, D.; Chidouh, A. Study of Mainardi’s fractional heat problem. (English) Zbl 1442.35522 J. Comput. Appl. Math. 378, Article ID 112943, 8 p. (2020). MSC: 35R11 80A19 44A10 PDF BibTeX XML Cite \textit{O. Saifia} et al., J. Comput. Appl. Math. 378, Article ID 112943, 8 p. (2020; Zbl 1442.35522) Full Text: DOI
Satco, Bianca-Renata Ulam-type stability for differential equations driven by measures. (English) Zbl 1450.34009 Math. Nachr. 293, No. 1, 147-157 (2020). Reviewer: Pham Viet Hai (Hanoi) MSC: 34A06 26A39 34D10 PDF BibTeX XML Cite \textit{B.-R. Satco}, Math. Nachr. 293, No. 1, 147--157 (2020; Zbl 1450.34009) Full Text: DOI
Kim, Gwang Hui; Lee, Yang-Hi Stability of an additive-quadratic-quartic functional equation. (English) Zbl 1436.39021 Demonstr. Math. 53, 1-7 (2020). MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{G. H. Kim} and \textit{Y.-H. Lee}, Demonstr. Math. 53, 1--7 (2020; Zbl 1436.39021) Full Text: DOI
Gupta, Anuradha; Rohilla, Manu On coupled best proximity points and Ulam-Hyers stability. (English) Zbl 1447.47045 J. Fixed Point Theory Appl. 22, No. 2, Paper No. 28, 21 p. (2020). Reviewer: Jarosław Górnicki (Rzeszów) MSC: 47H10 47H09 41A65 47J20 PDF BibTeX XML Cite \textit{A. Gupta} and \textit{M. Rohilla}, J. Fixed Point Theory Appl. 22, No. 2, Paper No. 28, 21 p. (2020; Zbl 1447.47045) Full Text: DOI
Park, Choonkil; Paokanta, Siriluk; Suparatulatorn, Raweerote Ulam stability of bihomomorphisms and biderivations in Banach algebras. (English) Zbl 1439.39013 J. Fixed Point Theory Appl. 22, No. 2, Paper No. 27, 18 p. (2020). Reviewer: Maryam Amyari (Mashhad) MSC: 39B52 39B82 39B62 46L05 47B47 47H10 46L57 PDF BibTeX XML Cite \textit{C. Park} et al., J. Fixed Point Theory Appl. 22, No. 2, Paper No. 27, 18 p. (2020; Zbl 1439.39013) Full Text: DOI
Badora, Roman The Ulam stability problem for the functional equation \(f(x\star g(y))=f(x)f(y)\). (English) Zbl 1440.39016 Result. Math. 75, No. 2, Paper No. 62, 8 p. (2020). Reviewer: Ghadir Sadeghi (Sabzevār) MSC: 39B82 39B52 PDF BibTeX XML Cite \textit{R. Badora}, Result. Math. 75, No. 2, Paper No. 62, 8 p. (2020; Zbl 1440.39016) Full Text: DOI
Brzdęk, Janusz; El-Hady, El-Sayed On approximately additive mappings in 2-Banach spaces. (English) Zbl 1440.39017 Bull. Aust. Math. Soc. 101, No. 2, 299-310 (2020). Reviewer: Jacek Chmieliński (Kraków) MSC: 39B82 39B52 47H10 PDF BibTeX XML Cite \textit{J. Brzdęk} and \textit{E.-S. El-Hady}, Bull. Aust. Math. Soc. 101, No. 2, 299--310 (2020; Zbl 1440.39017) Full Text: DOI
Baias, Alina Ramona; Popa, Dorian On Ulam stability of a linear difference equation in Banach spaces. (English) Zbl 1436.39002 Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1357-1371 (2020). Reviewer: Nikolay Dimitrov (Ruse) MSC: 39A06 39A30 PDF BibTeX XML Cite \textit{A. R. Baias} and \textit{D. Popa}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1357--1371 (2020; Zbl 1436.39002) Full Text: DOI
Jang, Sun Young; Saadati, Reza Approximation of an additive \(\left(\varrho_1, \varrho_2\right)\)-random operator inequality. (English) Zbl 1435.39005 J. Funct. Spaces 2020, Article ID 7540303, 5 p. (2020). Reviewer: Choonkil Park (Seoul) MSC: 39B62 39B52 39B82 47S50 PDF BibTeX XML Cite \textit{S. Y. Jang} and \textit{R. Saadati}, J. Funct. Spaces 2020, Article ID 7540303, 5 p. (2020; Zbl 1435.39005) Full Text: DOI
Sharma, Ajay K.; Sharma, Aakriti Boundedness, compactness and the Hyers-Ulam stability of a linear combination of differential operators. (English) Zbl 1441.47042 Complex Anal. Oper. Theory 14, No. 1, Paper No. 14, 12 p. (2020). Reviewer: Vagia Vlachou (Rio) MSC: 47B37 47E05 46E20 39B82 PDF BibTeX XML Cite \textit{A. K. Sharma} and \textit{A. Sharma}, Complex Anal. Oper. Theory 14, No. 1, Paper No. 14, 12 p. (2020; Zbl 1441.47042) Full Text: DOI
Choi, Chang-Kwon; Lee, Bogeun Stability of mixed additive-quadratic and additive-Drygas functional equations. (English) Zbl 1434.39024 Result. Math. 75, No. 1, Paper No. 38, 14 p. (2020). Reviewer: Maryam Amyari (Mashhad) MSC: 39B82 39B52 54E52 PDF BibTeX XML Cite \textit{C.-K. Choi} and \textit{B. Lee}, Result. Math. 75, No. 1, Paper No. 38, 14 p. (2020; Zbl 1434.39024) Full Text: DOI
Başcı, Yasemin; Mısır, Adil; Öğrekçi, Süleyman On the stability problem of differential equations in the sense of Ulam. (English) Zbl 1439.34061 Result. Math. 75, No. 1, Paper No. 6, 13 p. (2020). MSC: 34D10 47N20 PDF BibTeX XML Cite \textit{Y. Başcı} et al., Result. Math. 75, No. 1, Paper No. 6, 13 p. (2020; Zbl 1439.34061) Full Text: DOI
Senthil Kumar, Beri Venkatachalapathy; Bodaghi, Abasalt Approximation of the Jensen type rational functional equation by a fixed point technique. (English) Zbl 1431.39015 Bol. Soc. Parana. Mat. (3) 38, No. 3, 125-132 (2020). MSC: 39B82 39B72 PDF BibTeX XML Cite \textit{B. V. Senthil Kumar} and \textit{A. Bodaghi}, Bol. Soc. Parana. Mat. (3) 38, No. 3, 125--132 (2020; Zbl 1431.39015) Full Text: Link