×

Finite element modelling of turbulent fluid flow and heat transfer in continuous casting. (English) Zbl 0835.76051

A two-dimensional finite element model has been developed to analyze turbulent, steady-state fluid flow and heat transfer within the liquid pool of a continuous steel-slab-casting machine, using the code FIDAP. To achieve a good convergence, various solution strategies, relaxation factors, and meshes have been investigated. The effect of various numerical modelling parameters on the flow and temperature solutions are also investigated.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76F10 Shear flows and turbulence
80A22 Stefan problems, phase changes, etc.
80A20 Heat and mass transfer, heat flow (MSC2010)

Software:

FIDAP
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Sobolewski, R.; Hurtuk, D. J., Water modelling of slab caster flow conditions, Second Process Technology Conference Proceedings, Vol. 2, 160-165 (1982)
[2] Ferretti, A.; Podrini, M.; Si Schino, G., Submerged nozzle optimization to improve stainless steel surface quality at Terni steelworks, Steelmaking Proc., 68, 49-57 (1985)
[3] McPherson, N. A., Continuous cast clean steel, Steelmaking Proc., 68, 13-25 (1985)
[4] Guthrie, R. I.L., Physical and mathematical models for ladle metallurgy operations, (Szekely, J.; Hales, L. B.; Henein, H.; Jarrett, N.; Rajamani, K.; Samarasekera, I., Mathematical Modelling of Materials Processing Operations (Nov. 29, 1987)), 447-482, Palm Springs, Calif.
[5] Robertson, T.; Moore, P.; Hawkins, J. F., Computational flow model as aid to solution of fluid flow problems in the steel industry, Ironmaking and Steelmaking, 13, 4, 195-203 (1986)
[6] Sahai, Y., Computer simulation of melt flow control due to baffles with holes in continuous casting tundishes, (Szekely, J.; Hales, L. B.; Henein, H.; Jarrett, N.; Rajamani, K.; Samarasekera, I., Mathematical Modelling of Materials Processing Operations (Nov. 29, 1987), TMS Conference Proceedings: TMS Conference Proceedings Palm Springs, Calif), 431-445
[7] Yao, M.; Ichimiya, M.; Syozo, K.; Suzuki, K.; Sugiyama, K.; Mesaki, R., Three dimensional analysis of molten metal flow in continuous casting mould, Steelmaking Proc., 68, 27-34 (1985)
[8] Spitzer, K.; Dubke, M.; Schwertfeger, K., Rotational electromagnetic stirring in continuous casting of round strands, Metallurg. Trans. B, 17B, 119 (1986)
[9] Scharwz, M. P.; Turner, W. J., Applicability of the standard K-ϵ turbulence model to gas stirred baths, Appl. Math. Modelling, 12, 273-279 (1988) · Zbl 0645.76067
[10] Robertson, T.; Perkins, A., Physical and mathematical modelling of liquid steel temperature in continuous casting, Ironmaking and Steelmaking, 13, 6, 301-310 (1986)
[11] Ilegbusi, O. J.; Szekely, J., The modelling of fluid flow, tracer dispersion and inclusion behavior in tundishes, (Szekely, J.; Hales, L. B.; Henein, H.; Jarrett, N.; Rajamani, K.; Samarasekera, I., Mathematical Modelling of Materials Processing Operations (Nov. 29, 1987), TMS Conference Proceedings: TMS Conference Proceedings Palm Springs, Calif), 409-429
[12] Launder, B. E.; Spalding, D. B., Mathematical Models of Turbulence (1972), Academic Press: Academic Press London · Zbl 0288.76027
[13] Rodi, W., Turbulence Models and Their Application in Hydraulics—A State of the Art Review (1980), University of Karlsruhe: University of Karlsruhe Karlsruhe, Germany
[14] Chiesa, F. M.; Guthrie, R. I.L., Natural convective heat transfer rates during the solidification and melting of metals and alloy systems, J. Heat Transfer, 96, 3, 377-384 (1974)
[15] Engelman, M. S., FIDAP Theoretical Manual—Revision 4.5, III (1989), Fluid Dynamics International, Inc: Fluid Dynamics International, Inc Evanston
[16] Brooks, A. N.; Thomas, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Strokes equations, Comput. Methods Appl. Mechanics Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[17] Nakato, H.; Ozawa, M.; Kinoshita, K.; Habu, Y.; Emi, T., Factors affecting the formation of shell and longitudinal cracks in mold during high speed continuous casting of slabs, Trans. Iron Steel Inst. Japan, 24, 11, 957-965 (1984)
[18] Prandtl, L.; Tietjens, O., Applied Hydro-and Aeromechanics (1934), McGraw-Hill: McGraw-Hill New York · Zbl 0078.39604
[19] Schlichting, H., Boundary-Layer Theory (1955), McGraw-Hill: McGraw-Hill New York
[20] Haroutunian, V., Turbulent flows with FIDAP (1988), Fluid Dynamics International, Seminar Notes
[21] Thomas, B. G.; Mika, L. J.; Najjar, F. M., Simulation of fluid flow inside a continuous slab casting machine, Metallurg. Trans. B, 21B, 387-400 (1990)
[22] Ortega, J. M.; Rheinboldt, W. C., Iterative Solution of Non-linear Equations in Several Variables (1980), Academic Press: Academic Press New York · Zbl 0241.65046
[23] Smith, S. L.; Brebbia, C. A., Improved stability techniques for the solution of Navier-Strokes equations, Appl. Math. Modelling, 1, 226-234 (1977) · Zbl 0362.76002
[24] Carey, G. F.; Plover, T., Variable upwinding and adaptive mesh refinement in convection-diffusion, Internat. J. Numer. Methods Engrg., 19, 341-353 (1983) · Zbl 0505.76102
[25] Huyakorn, P. S., Solution of steady-state, convective transport equation using an upwind finite element scheme, Appl. Math. Modelling, 1, 187-195 (1977) · Zbl 0362.76144
[26] Cook, R. D., Concepts and Applications of Finite Element Analysis (1981), John Wiley: John Wiley New York · Zbl 0534.73056
[27] Hinze, J. O., Turbulence (1959), McGraw-Hill: McGraw-Hill New York
[28] Yakhot, V.; Orszag, S. A.; Yakhot, A., Heat transfer in turbulent fluids, Internat. J. Heat Mass Transfer, 30, 1, 15-22 (1987), I: Pipe Flow · Zbl 0613.76062
[29] Blom, J., Experimental determination of the turbulent Prandtl number in a developing temperature boundary layer, Vol. 2 (1970), Elsevier: Elsevier Amsterdam, Paper FC 2.2
[30] Cebeci, T., A model for eddy conductivity and turbulent Prandtl number, J. Heat Transfer, Trans. ASME, 95, 227-234 (1973)
[31] Kumada, M.; Mabuchi, I., Trans. Japan. Soc. Mech. Engrg., 35, 1053-1061 (1969)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.