Cheng, Meifang; Lee, Ming-Yi; Lin, Chin-Cheng; Qu, Meng Monge-Ampère singular integral operators acting on Triebel-Lizorkin spaces. (English) Zbl 07328930 Appl. Anal. 100, No. 5, 923-963 (2021). MSC: 42B20 42B35 PDF BibTeX XML Cite \textit{M. Cheng} et al., Appl. Anal. 100, No. 5, 923--963 (2021; Zbl 07328930) Full Text: DOI
Caetano, António; Kempka, Henning Decompositions with atoms and molecules for variable exponent Triebel-Lizorkin-Morrey spaces. (English) Zbl 07326826 Constr. Approx. 53, No. 1, 201-234 (2021). MSC: 46E35 46E30 42B25 PDF BibTeX XML Cite \textit{A. Caetano} and \textit{H. Kempka}, Constr. Approx. 53, No. 1, 201--234 (2021; Zbl 07326826) Full Text: DOI
Bui, The Anh; Duong, Xuan Thinh Higher-order Riesz transforms of Hermite operators on new Besov and Triebel-Lizorkin spaces. (English) Zbl 07326823 Constr. Approx. 53, No. 1, 85-120 (2021). MSC: 42B35 42B20 35J15 30H25 PDF BibTeX XML Cite \textit{T. A. Bui} and \textit{X. T. Duong}, Constr. Approx. 53, No. 1, 85--120 (2021; Zbl 07326823) Full Text: DOI
Georgiadis, Athanasios G.; Kyriazis, George; Petrushev, Pencho Product Besov and Triebel-Lizorkin spaces with application to nonlinear approximation. (English) Zbl 07326822 Constr. Approx. 53, No. 1, 39-83 (2021). MSC: 42B25 42B35 46F10 41A17 42C40 PDF BibTeX XML Cite \textit{A. G. Georgiadis} et al., Constr. Approx. 53, No. 1, 39--83 (2021; Zbl 07326822) Full Text: DOI
Hong, Qing; Hu, Guorong Equivalent quasi-norms in Besov and Triebel-Lizorkin spaces on Lie groups of polynomial growth. (English) Zbl 07315657 J. Math. Anal. Appl. 495, No. 2, Article ID 124769, 20 p. (2021). MSC: 46E35 42B35 42B20 43A05 PDF BibTeX XML Cite \textit{Q. Hong} and \textit{G. Hu}, J. Math. Anal. Appl. 495, No. 2, Article ID 124769, 20 p. (2021; Zbl 07315657) Full Text: DOI
Hovemann, Marc Truncation in Besov-Morrey and Triebel-Lizorkin-Morrey spaces. (English) Zbl 07310968 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 204, Article ID 112239, 31 p. (2021). MSC: 46E35 PDF BibTeX XML Cite \textit{M. Hovemann}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 204, Article ID 112239, 31 p. (2021; Zbl 07310968) Full Text: DOI
Xu, Jingshi; Yang, Xiaodi The \(B_\omega^u\) type Morrey-Triebel-Lizorkin spaces with variable smoothness and integrability. (English) Zbl 07265444 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112098, 19 p. (2021). MSC: 46E35 42B25 42B35 PDF BibTeX XML Cite \textit{J. Xu} and \textit{X. Yang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 202, Article ID 112098, 19 p. (2021; Zbl 07265444) Full Text: DOI
Zhao, Nan; Zhou, Jiang Characterization of commutators of Hardy-Littlewood fractional maximal functions on Triebel-Lizorkin space. (Chinese. English summary) Zbl 07295568 J. Northeast Norm. Univ., Nat. Sci. Ed. 52, No. 2, 19-25 (2020). MSC: 47B47 42B25 42B35 PDF BibTeX XML Cite \textit{N. Zhao} and \textit{J. Zhou}, J. Northeast Norm. Univ., Nat. Sci. Ed. 52, No. 2, 19--25 (2020; Zbl 07295568) Full Text: DOI
Fang, Chenglong Characterizations of commutators of singular integral operators on variable exponent spaces. (English) Zbl 07295447 J. Math. Res. Appl. 40, No. 5, 519-533 (2020). MSC: 42B20 42B35 47B47 PDF BibTeX XML Cite \textit{C. Fang}, J. Math. Res. Appl. 40, No. 5, 519--533 (2020; Zbl 07295447) Full Text: DOI
Tan, Jian Inhomogeneous multi-parameter Besov and Triebel-Lizorkin spaces associated with different homogeneities and boundedness of composition operators. (English) Zbl 1454.42020 J. Math. Inequal. 14, No. 3, 747-769 (2020). MSC: 42B35 42B20 PDF BibTeX XML Cite \textit{J. Tan}, J. Math. Inequal. 14, No. 3, 747--769 (2020; Zbl 1454.42020) Full Text: DOI
Huang, Long; Liu, Jun; Yang, Dachun; Yuan, Wen Identification of anisotropic mixed-norm Hardy spaces and certain homogeneous Triebel-Lizorkin spaces. (English) Zbl 1448.42030 J. Approx. Theory 258, Article ID 105459, 27 p. (2020). MSC: 42B35 42B30 46E35 42B25 42B15 47G30 PDF BibTeX XML Cite \textit{L. Huang} et al., J. Approx. Theory 258, Article ID 105459, 27 p. (2020; Zbl 1448.42030) Full Text: DOI
Liu, Feng; Xue, Qingying; Yabuta, Kôzô Boundedness and continuity of maximal singular integrals and maximal functions on Triebel-Lizorkin spaces. (English) Zbl 1448.42023 Sci. China, Math. 63, No. 5, 907-936 (2020). Reviewer: Bilal Bilalov (Baku) MSC: 42B20 42B15 42B25 30H25 PDF BibTeX XML Cite \textit{F. Liu} et al., Sci. China, Math. 63, No. 5, 907--936 (2020; Zbl 1448.42023) Full Text: DOI
Haroske, Dorothee D.; Moura, Susana D.; Skrzypczak, Leszek Some embeddings of Morrey spaces with critical smoothness. (English) Zbl 07229535 J. Fourier Anal. Appl. 26, No. 3, Paper No. 50, 31 p. (2020). Reviewer: Hans Triebel (Jena) MSC: 46E35 46E30 PDF BibTeX XML Cite \textit{D. D. Haroske} et al., J. Fourier Anal. Appl. 26, No. 3, Paper No. 50, 31 p. (2020; Zbl 07229535) Full Text: DOI
Moussai, Madani Some Hardy-type estimates in realized homogeneous Besov and Triebel-Lizorkin spaces. (English. French summary) Zbl 07224973 Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 1, 39-55 (2020). MSC: 46E35 PDF BibTeX XML Cite \textit{M. Moussai}, Ann. Fac. Sci. Toulouse, Math. (6) 29, No. 1, 39--55 (2020; Zbl 07224973) Full Text: DOI
Ali, Mohammed; Katatbeh, Qutaibeh Generalized parabolic Marcinkiewicz integrals associated with polynomial compound curves with rough kernels. (English) Zbl 1443.42008 Demonstr. Math. 53, 44-57 (2020). MSC: 42B20 42B25 47G10 PDF BibTeX XML Cite \textit{M. Ali} and \textit{Q. Katatbeh}, Demonstr. Math. 53, 44--57 (2020; Zbl 1443.42008) Full Text: DOI
Liu, Jun; Yang, Dachun; Yuan, Wen Littlewood-Paley characterizations of weighted anisotropic Triebel-Lizorkin spaces via averages on balls. II. (English) Zbl 1455.46036 Z. Anal. Anwend. 39, No. 1, 1-26 (2020). MSC: 46E35 42B25 42B35 42C40 PDF BibTeX XML Cite \textit{J. Liu} et al., Z. Anal. Anwend. 39, No. 1, 1--26 (2020; Zbl 1455.46036) Full Text: DOI
Yang, Qixiang; Qian, Tao The dual elements of function sets and Fefferman-Stein decomposition of Triebel-Lizorkin functions via wavelets. (English) Zbl 1442.42057 Comput. Methods Funct. Theory 20, No. 2, 185-216 (2020). MSC: 42B35 42C40 46E35 42B20 PDF BibTeX XML Cite \textit{Q. Yang} and \textit{T. Qian}, Comput. Methods Funct. Theory 20, No. 2, 185--216 (2020; Zbl 1442.42057) Full Text: DOI
Liu, Feng; Liu, Suying; Zhang, Xiao Regularity properties of bilinear maximal function and its fractional variant. (English) Zbl 1440.42086 Result. Math. 75, No. 3, Paper No. 88, 29 p. (2020). MSC: 42B25 46E35 PDF BibTeX XML Cite \textit{F. Liu} et al., Result. Math. 75, No. 3, Paper No. 88, 29 p. (2020; Zbl 1440.42086) Full Text: DOI
Bruno, Tommaso; Peloso, Marco M.; Vallarino, Maria Besov and Triebel-Lizorkin spaces on Lie groups. (English) Zbl 1453.46025 Math. Ann. 377, No. 1-2, 335-377 (2020). Reviewer: Hans Triebel (Jena) MSC: 46E35 22E30 43A15 PDF BibTeX XML Cite \textit{T. Bruno} et al., Math. Ann. 377, No. 1--2, 335--377 (2020; Zbl 1453.46025) Full Text: DOI
Liu, Feng; Xue, Qingying; Yabuta, Kôzô Regularity and continuity of the multilinear strong maximal operators. (English. French summary) Zbl 1439.42029 J. Math. Pures Appl. (9) 138, 204-241 (2020). MSC: 42B25 47G10 46E35 PDF BibTeX XML Cite \textit{F. Liu} et al., J. Math. Pures Appl. (9) 138, 204--241 (2020; Zbl 1439.42029) Full Text: DOI
Liu, Feng; Xue, Qingying; Zhang, Pu Regularity and continuity of commutators of the Hardy-Littlewood maximal function. (English) Zbl 07198950 Math. Nachr. 293, No. 3, 491-509 (2020). MSC: 42B25 46E35 PDF BibTeX XML Cite \textit{F. Liu} et al., Math. Nachr. 293, No. 3, 491--509 (2020; Zbl 07198950) Full Text: DOI
Karak, Nijjwal Lower bound of measure and embeddings of Sobolev, Besov and Triebel-Lizorkin spaces. (English) Zbl 07197939 Math. Nachr. 293, No. 1, 120-128 (2020). MSC: 42B35 46E35 PDF BibTeX XML Cite \textit{N. Karak}, Math. Nachr. 293, No. 1, 120--128 (2020; Zbl 07197939) Full Text: DOI
Chen, Jingchun; Fan, Dashan Triebel-Lizorkin space estimates for evolution equations with structure dissipation. (English) Zbl 1452.46024 Adv. Oper. Theory 5, No. 2, 281-300 (2020). MSC: 46E35 42B25 42B35 42B37 PDF BibTeX XML Cite \textit{J. Chen} and \textit{D. Fan}, Adv. Oper. Theory 5, No. 2, 281--300 (2020; Zbl 1452.46024) Full Text: DOI
Drihem, Douadi On the duality of variable Triebel-Lizorkin spaces. (English) Zbl 1453.46026 Collect. Math. 71, No. 2, 263-278 (2020). Reviewer: Hans Triebel (Jena) MSC: 46E35 46B10 PDF BibTeX XML Cite \textit{D. Drihem}, Collect. Math. 71, No. 2, 263--278 (2020; Zbl 1453.46026) Full Text: DOI
Lindemulder, Nick Maximal regularity with weights for parabolic problems with inhomogeneous boundary conditions. (English) Zbl 1439.35228 J. Evol. Equ. 20, No. 1, 59-108 (2020). Reviewer: Raymond Johnson (Columbia) MSC: 35K52 46E35 46E40 42B15 PDF BibTeX XML Cite \textit{N. Lindemulder}, J. Evol. Equ. 20, No. 1, 59--108 (2020; Zbl 1439.35228) Full Text: DOI
Trong, Nguyen Ngoc; Truong, Le Xuan; Dung, Tran Tri; Vo, Hanh Nguyen Triebel-Lizorkin-Morrey spaces associated to Hermite operators. (English) Zbl 1437.42035 Rev. Mat. Complut. 33, No. 2, 527-555 (2020). MSC: 42B35 42B20 42B15 46E35 PDF BibTeX XML Cite \textit{N. N. Trong} et al., Rev. Mat. Complut. 33, No. 2, 527--555 (2020; Zbl 1437.42035) Full Text: DOI
Bui, The Anh Besov and Triebel-Lizorkin spaces for Schrödinger operators with inverse-square potentials and applications. (English) Zbl 1437.35690 J. Differ. Equations 269, No. 1, 641-688 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35R11 35Q40 35K08 46E35 47D03 47F05 PDF BibTeX XML Cite \textit{T. A. Bui}, J. Differ. Equations 269, No. 1, 641--688 (2020; Zbl 1437.35690) Full Text: DOI
Drihem, Douadi Variable Triebel-Lizorkin-type spaces. (English) Zbl 1451.46034 Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1817-1856 (2020). Reviewer: Wen Yuan (Beijing) MSC: 46E35 PDF BibTeX XML Cite \textit{D. Drihem}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 2, 1817--1856 (2020; Zbl 1451.46034) Full Text: DOI
Hensel, Sebastian; Rosati, Tommaso Modelled distributions of Triebel-Lizorkin type. (English) Zbl 07178845 Stud. Math. 252, No. 3, 251-297 (2020). Reviewer: Hans Triebel (Jena) MSC: 46E35 42B35 60H15 PDF BibTeX XML Cite \textit{S. Hensel} and \textit{T. Rosati}, Stud. Math. 252, No. 3, 251--297 (2020; Zbl 07178845) Full Text: DOI
Bui, Huy-Qui; Bui, The Anh; Duong, Xuan Thinh Weighted Besov and Triebel-Lizorkin spaces associated with operators and applications. (English) Zbl 1451.42036 Forum Math. Sigma 8, Paper No. e11, 95 p. (2020). Reviewer: Wen Yuan (Beijing) MSC: 42B37 42B30 42B25 47D08 46F05 47B38 35K08 46E35 PDF BibTeX XML Cite \textit{H.-Q. Bui} et al., Forum Math. Sigma 8, Paper No. e11, 95 p. (2020; Zbl 1451.42036) Full Text: DOI
Ushakova, Elena P. Spline wavelet bases in function spaces with Muckenhoupt weights. (English) Zbl 1446.46022 Rev. Mat. Complut. 33, No. 1, 125-160 (2020). Reviewer: Hans Triebel (Jena) MSC: 46E35 42C40 42B35 PDF BibTeX XML Cite \textit{E. P. Ushakova}, Rev. Mat. Complut. 33, No. 1, 125--160 (2020; Zbl 1446.46022) Full Text: DOI
Ali, Mohammad; Baddour, Hasan; Darrag, Boushra Inclusion relations between \(\alpha \)-modulation spaces and Triebel-Lizorkin spaces. (English) Zbl 1447.46027 J. Funct. Spaces 2020, Article ID 9640742, 7 p. (2020). MSC: 46E35 PDF BibTeX XML Cite \textit{M. Ali} et al., J. Funct. Spaces 2020, Article ID 9640742, 7 p. (2020; Zbl 1447.46027) Full Text: DOI
Bui, The Anh Hermite pseudo-multipliers on new Besov and Triebel-Lizorkin spaces. (English) Zbl 1437.42032 J. Approx. Theory 252, Article ID 105348, 16 p. (2020). Reviewer: Krzysztof Stempak (Wrocław) MSC: 42B35 42B20 42B15 PDF BibTeX XML Cite \textit{T. A. Bui}, J. Approx. Theory 252, Article ID 105348, 16 p. (2020; Zbl 1437.42032) Full Text: DOI
Cioica-Licht, Petru A.; Weimar, Markus On the limit regularity in Sobolev and Besov scales related to approximation theory. (English) Zbl 1432.35034 J. Fourier Anal. Appl. 26, No. 1, Paper No. 10, 24 p. (2020). MSC: 35B65 35B35 35J92 41A25 46E35 47A65 65N12 PDF BibTeX XML Cite \textit{P. A. Cioica-Licht} and \textit{M. Weimar}, J. Fourier Anal. Appl. 26, No. 1, Paper No. 10, 24 p. (2020; Zbl 1432.35034) Full Text: DOI
Caetano, António; Kempka, Henning Variable exponent Triebel-Lizorkin-Morrey spaces. (English) Zbl 1431.42034 J. Math. Anal. Appl. 484, No. 1, Article ID 123712, 17 p. (2020). MSC: 42B25 42B35 46E35 42A85 PDF BibTeX XML Cite \textit{A. Caetano} and \textit{H. Kempka}, J. Math. Anal. Appl. 484, No. 1, Article ID 123712, 17 p. (2020; Zbl 1431.42034) Full Text: DOI arXiv
Cao, Jun; Grigor’yan, Alexander Heat kernels and Besov spaces associated with second order divergence form elliptic operators. (English) Zbl 1428.35148 J. Fourier Anal. Appl. 26, No. 1, Paper No. 3, 52 p. (2020). MSC: 35K08 46E35 42B35 35J15 PDF BibTeX XML Cite \textit{J. Cao} and \textit{A. Grigor'yan}, J. Fourier Anal. Appl. 26, No. 1, Paper No. 3, 52 p. (2020; Zbl 1428.35148) Full Text: DOI
Tintarev, Cyril Concentration compactness. Functional-analytic theory of concentration phenomena. (English) Zbl 1452.35003 De Gruyter Series in Nonlinear Analysis and Applications 33. Berlin: De Gruyter (ISBN 978-3-11-053034-6/hbk; 978-3-11-053243-2/ebook). xii, 216 p. (2020). Reviewer: Shuangjie Peng (Wuhan) MSC: 35-02 46-02 46Exx 35A23 35B06 35J61 PDF BibTeX XML Cite \textit{C. Tintarev}, Concentration compactness. Functional-analytic theory of concentration phenomena. Berlin: De Gruyter (2020; Zbl 1452.35003) Full Text: DOI
Benallia, Mohamed; Moussai, Madani Realization of homogeneous Triebel-Lizorkin spaces with \(p=\infty\) and characterizations via differences. (English) Zbl 07281264 Ufim. Mat. Zh. 11, No. 4, 114-129 (2019) and Ufa Math. J. 11, No. 4, 115-130 (2019). MSC: 46E35 PDF BibTeX XML Cite \textit{M. Benallia} and \textit{M. Moussai}, Ufim. Mat. Zh. 11, No. 4, 114--129 (2019; Zbl 07281264) Full Text: DOI MNR
Hernández Hernández, Jorge Eliécer Characterization of BMO using wavelets through Triebel-Lizorkin spaces. (English) Zbl 07273943 Rev. Mat. Teor. Apl. 26, No. 1, 21-44 (2019). Reviewer: Ilona Iglewska-Nowak (Szczecin) MSC: 42C40 42B30 PDF BibTeX XML Cite \textit{J. E. Hernández Hernández}, Rev. Mat. Teor. Apl. 26, No. 1, 21--44 (2019; Zbl 07273943) Full Text: DOI
Li, Pengtao; Sun, Wenchang Applications of multi-resolution analysis to Besov-Q type spaces and Triebel-Lizorkin type spaces. (Chinese. English summary) Zbl 1449.42071 Adv. Math., Beijing 48, No. 5, 513-530 (2019). MSC: 42C40 42B35 PDF BibTeX XML Cite \textit{P. Li} and \textit{W. Sun}, Adv. Math., Beijing 48, No. 5, 513--530 (2019; Zbl 1449.42071) Full Text: DOI
Ruan, Jianmiao; Fan, Dashan; Zhang, Chunjie Estimates of damped fractional wave equations. (English) Zbl 1437.35125 Fract. Calc. Appl. Anal. 22, No. 4, 990-1013 (2019). MSC: 35B45 35R11 35L05 42B30 42B35 42B37 PDF BibTeX XML Cite \textit{J. Ruan} et al., Fract. Calc. Appl. Anal. 22, No. 4, 990--1013 (2019; Zbl 1437.35125) Full Text: DOI
Hussain, Amjad; Ajaib, Amna Some results for the commutators of generalized Hausdorff operator. (English) Zbl 1434.42036 J. Math. Inequal. 13, No. 4, 1129-1146 (2019). MSC: 42B35 26D15 42B30 46E30 PDF BibTeX XML Cite \textit{A. Hussain} and \textit{A. Ajaib}, J. Math. Inequal. 13, No. 4, 1129--1146 (2019; Zbl 1434.42036) Full Text: DOI
Liu, Jun; Yang, Dachun; Yuan, Wen Littlewood-Paley characterizations of weighted anisotropic Triebel-Lizorkin spaces via averages on balls. I. (English) Zbl 1446.46021 Z. Anal. Anwend. 38, No. 4, 397-418 (2019). Reviewer: Hans Triebel (Jena) MSC: 46E35 42B25 42B35 42C40 PDF BibTeX XML Cite \textit{J. Liu} et al., Z. Anal. Anwend. 38, No. 4, 397--418 (2019; Zbl 1446.46021) Full Text: DOI
Izuki, Mitsuo; Noi, Takahiro Characterization of generalized Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces by differences. (English) Zbl 07161651 RIMS Kôkyûroku Bessatsu B74, 93-125 (2019). MSC: 46E35 42B35 41A17 PDF BibTeX XML Cite \textit{M. Izuki} and \textit{T. Noi}, RIMS Kôkyûroku Bessatsu B74, 93--125 (2019; Zbl 07161651)
Li, Xiurong; Liang, Hong BKM’s blow-up criterion in homogeneous Triebel-Lizorkin spaces for the 3D dissipative system in electro-hydrodynamics. (Chinese. English summary) Zbl 1449.35121 Acta Sci. Nat. Univ. Sunyatseni 58, No. 3, 140-144 (2019). MSC: 35B44 76W05 PDF BibTeX XML Cite \textit{X. Li} and \textit{H. Liang}, Acta Sci. Nat. Univ. Sunyatseni 58, No. 3, 140--144 (2019; Zbl 1449.35121) Full Text: DOI
Drihem, Douadi Jawerth-Franke embeddings of Herz-type Besov and Triebel-Lizorkin spaces. (English) Zbl 1437.46040 Funct. Approximatio, Comment. Math. 61, No. 2, 207-226 (2019). Reviewer: Hans Triebel (Jena) MSC: 46E35 46E30 42B35 PDF BibTeX XML Cite \textit{D. Drihem}, Funct. Approximatio, Comment. Math. 61, No. 2, 207--226 (2019; Zbl 1437.46040) Full Text: DOI Euclid arXiv
Djeriou, Aissa; Drihem, Douadi On the continuity of pseudo-differential operators on multiplier spaces associated to Herz-type Triebel-Lizorkin spaces. (English) Zbl 1427.42014 Mediterr. J. Math. 16, No. 6, Paper No. 153, 25 p. (2019). MSC: 42B15 46E35 47G30 35S05 PDF BibTeX XML Cite \textit{A. Djeriou} and \textit{D. Drihem}, Mediterr. J. Math. 16, No. 6, Paper No. 153, 25 p. (2019; Zbl 1427.42014) Full Text: DOI
Izuki, Mitsuo; Noi, Takahiro Generalized Besov-Morrey spaces and generalized Triebel-Lizorkin-Morrey spaces on domains. (English) Zbl 1428.42040 Math. Nachr. 292, No. 10, 2212-2251 (2019). MSC: 42B35 41A17 58D17 PDF BibTeX XML Cite \textit{M. Izuki} and \textit{T. Noi}, Math. Nachr. 292, No. 10, 2212--2251 (2019; Zbl 1428.42040) Full Text: DOI
Prats, Martí Measuring Triebel-Lizorkin fractional smoothness on domains in terms of first-order differences. (English) Zbl 1428.42041 J. Lond. Math. Soc., II. Ser. 100, No. 2, 692-716 (2019). MSC: 42B35 46E35 PDF BibTeX XML Cite \textit{M. Prats}, J. Lond. Math. Soc., II. Ser. 100, No. 2, 692--716 (2019; Zbl 1428.42041) Full Text: DOI arXiv
Georgiadis, A. G.; Kerkyacharian, G.; Kyriazis, G.; Petrushev, P. Atomic and molecular decomposition of homogeneous spaces of distributions associated to non-negative self-adjoint operators. (English) Zbl 1432.46023 J. Fourier Anal. Appl. 25, No. 6, 3259-3309 (2019). Reviewer: Léonard Todjihounde (Abomey-Calavi) MSC: 46E36 46E35 43A85 42B25 42B15 42C15 42C40 PDF BibTeX XML Cite \textit{A. G. Georgiadis} et al., J. Fourier Anal. Appl. 25, No. 6, 3259--3309 (2019; Zbl 1432.46023) Full Text: DOI
Liu, Feng A note on generalized parametric Marcinkiewicz integrals. (English) Zbl 1423.42028 Bull. Korean Math. Soc. 56, No. 5, 1099-1115 (2019). MSC: 42B20 42B25 42B99 PDF BibTeX XML Cite \textit{F. Liu}, Bull. Korean Math. Soc. 56, No. 5, 1099--1115 (2019; Zbl 1423.42028) Full Text: DOI
Naibo, Virginia; Thomson, Alexander Coifman-Meyer multipliers: Leibniz-type rules and applications to scattering of solutions to PDEs. (English) Zbl 1423.42038 Trans. Am. Math. Soc. 372, No. 8, 5453-5481 (2019). MSC: 42B25 42B15 42B20 42B35 46E35 30H25 PDF BibTeX XML Cite \textit{V. Naibo} and \textit{A. Thomson}, Trans. Am. Math. Soc. 372, No. 8, 5453--5481 (2019; Zbl 1423.42038) Full Text: DOI arXiv
Lopes, Pedro T. P. Fredholmness and ellipticity of \(\Psi DO\)s on \(B_{pq}^s\left (\mathbb{R}^n\right )\) and \(F_{pq}^s\left (\mathbb{R}^n\right )\). (English) Zbl 1423.35480 Molahajloo, Shahla (ed.) et al., Analysis of pseudo-differential operators. Based on the 11th ISAAC congress, Växjö, Sweden, August 14–18, 2017. Cham: Birkhäuser. Trends Math., 63-77 (2019). MSC: 35S05 46E35 35S15 PDF BibTeX XML Cite \textit{P. T. P. Lopes}, in: Analysis of pseudo-differential operators. Based on the 11th ISAAC congress, Växjö, Sweden, August 14--18, 2017. Cham: Birkhäuser. 63--77 (2019; Zbl 1423.35480) Full Text: DOI
Kallel, Samir Lipschitz and Triebel-Lizorkin spaces associated with the Dunkl operators on \(\mathbb{R}^d\). (English) Zbl 1437.46041 Positivity 23, No. 5, 1021-1049 (2019). Reviewer: Hans Triebel (Jena) MSC: 46E35 42A38 42B25 PDF BibTeX XML Cite \textit{S. Kallel}, Positivity 23, No. 5, 1021--1049 (2019; Zbl 1437.46041) Full Text: DOI
Drihem, Douadi; Hebbache, Wafa Continuity of non-regular pseudodifferential operators on variable Triebel-Lizorkin spaces. (English) Zbl 1436.35335 Ann. Pol. Math. 122, No. 3, 233-248 (2019). Reviewer: Nenad Teofanov (Novi Sad) MSC: 35S05 35S50 46E35 PDF BibTeX XML Cite \textit{D. Drihem} and \textit{W. Hebbache}, Ann. Pol. Math. 122, No. 3, 233--248 (2019; Zbl 1436.35335) Full Text: DOI
Baaske, Franka; Schmeißer, Hans-Jürgen On the existence and uniqueness of mild and strong solutions of a generalized nonlinear heat equation. (English) Zbl 1423.35154 Z. Anal. Anwend. 38, No. 3, 287-308 (2019). MSC: 35K25 35K55 46E35 35Q35 PDF BibTeX XML Cite \textit{F. Baaske} and \textit{H.-J. Schmeißer}, Z. Anal. Anwend. 38, No. 3, 287--308 (2019; Zbl 1423.35154) Full Text: DOI
Hu, Xi; Zhou, Jiang Boundedness of multilinear commutators for multilinear Calderón-Zygmund operators with kernels of Dini’s type on Triebel-Lizorkin spaces. (Chinese. English summary) Zbl 1438.42024 J. Northeast Norm. Univ., Nat. Sci. Ed. 51, No. 1, 18-22 (2019). MSC: 42B20 42B35 47B47 PDF BibTeX XML Cite \textit{X. Hu} and \textit{J. Zhou}, J. Northeast Norm. Univ., Nat. Sci. Ed. 51, No. 1, 18--22 (2019; Zbl 1438.42024) Full Text: DOI
Cleanthous, Galatia; Georgiadis, Athanasios G.; Nielsen, Morten Molecular decomposition of anisotropic homogeneous mixed-norm spaces with applications to the boundedness of operators. (English) Zbl 1428.42039 Appl. Comput. Harmon. Anal. 47, No. 2, 447-480 (2019). Reviewer: Hans Triebel (Jena) MSC: 42B35 42C40 46E35 35S05 42B15 42B25 PDF BibTeX XML Cite \textit{G. Cleanthous} et al., Appl. Comput. Harmon. Anal. 47, No. 2, 447--480 (2019; Zbl 1428.42039) Full Text: DOI
Park, Bae Jun Fourier multiplier theorems for Triebel-Lizorkin spaces. (English) Zbl 1427.42027 Math. Z. 293, No. 1-2, 221-258 (2019). Reviewer: Dongyong Yang (Xiamen) MSC: 42B30 42B15 46E35 PDF BibTeX XML Cite \textit{B. J. Park}, Math. Z. 293, No. 1--2, 221--258 (2019; Zbl 1427.42027) Full Text: DOI arXiv
Sadasue, Gaku Martingale Besov spaces and martingale Triebel-Lizorkin spaces. (English) Zbl 07104593 Sci. Math. Jpn. 82, No. 1, 57-82 (2019). MSC: 60G46 46E30 42B35 60G42 PDF BibTeX XML Cite \textit{G. Sadasue}, Sci. Math. Jpn. 82, No. 1, 57--82 (2019; Zbl 07104593)
Xia, Runlian; Xiong, Xiao Mapping properties of operator-valued pseudo-differential operators. (English) Zbl 07104048 J. Funct. Anal. 277, No. 9, 2918-2980 (2019). MSC: 46L52 42B30 46L07 47L65 47G30 PDF BibTeX XML Cite \textit{R. Xia} and \textit{X. Xiong}, J. Funct. Anal. 277, No. 9, 2918--2980 (2019; Zbl 07104048) Full Text: DOI arXiv
Ma, Lingwei; Zhang, Zhenqiu Higher differentiability for solutions of nonhomogeneous elliptic obstacle problems. (English) Zbl 1425.35057 J. Math. Anal. Appl. 479, No. 1, 789-816 (2019). MSC: 35J87 PDF BibTeX XML Cite \textit{L. Ma} and \textit{Z. Zhang}, J. Math. Anal. Appl. 479, No. 1, 789--816 (2019; Zbl 1425.35057) Full Text: DOI
Ding, Wei; Chen, Jiao; Niu, Yaoming Note on duality of weighted multi-parameter Triebel-Lizorkin spaces. (English) Zbl 07088815 Czech. Math. J. 69, No. 3, 763-779 (2019). MSC: 42B25 42B35 PDF BibTeX XML Cite \textit{W. Ding} et al., Czech. Math. J. 69, No. 3, 763--779 (2019; Zbl 07088815) Full Text: DOI
Cleanthous, Galatia; Georgiadis, Athanasios G.; Nielsen, Morten Fourier multipliers on anisotropic mixed-norm spaces of distributions. (English) Zbl 1436.46035 Math. Scand. 124, No. 2, 289-304 (2019). MSC: 46E35 42B15 PDF BibTeX XML Cite \textit{G. Cleanthous} et al., Math. Scand. 124, No. 2, 289--304 (2019; Zbl 1436.46035) Full Text: DOI arXiv
Liu, Yin; Zhao, Jiman Bilinear Fourier multiplier operators on variable Triebel spaces. (English) Zbl 1422.42013 Math. Inequal. Appl. 22, No. 2, 677-690 (2019). Reviewer: Hans Triebel (Jena) MSC: 42B15 42B35 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{J. Zhao}, Math. Inequal. Appl. 22, No. 2, 677--690 (2019; Zbl 1422.42013) Full Text: DOI
Liu, Feng Boundedness and continuity of maximal operators associated to polynomial compound curves on Triebel-Lizorkin spaces. (English) Zbl 1418.42022 Math. Inequal. Appl. 22, No. 1, 25-44 (2019). MSC: 42B20 42B15 42B25 PDF BibTeX XML Cite \textit{F. Liu}, Math. Inequal. Appl. 22, No. 1, 25--44 (2019; Zbl 1418.42022) Full Text: DOI
Grosse, Nadine; Schneider, Cornelia Symmetries on manifolds: generalizations of the radial lemma of Strauss. (English) Zbl 1428.46023 Rev. Mat. Complut. 32, No. 2, 365-393 (2019). MSC: 46E35 53C20 PDF BibTeX XML Cite \textit{N. Grosse} and \textit{C. Schneider}, Rev. Mat. Complut. 32, No. 2, 365--393 (2019; Zbl 1428.46023) Full Text: DOI arXiv
Tsurumi, Hiroyuki The stationary Navier-Stokes equations in the scaling invariant Triebel-Lizorkin spaces. (English) Zbl 1424.35279 Differ. Integral Equ. 32, No. 5-6, 323-336 (2019). Reviewer: Maria Alessandra Ragusa (Catania) MSC: 35Q30 42B37 PDF BibTeX XML Cite \textit{H. Tsurumi}, Differ. Integral Equ. 32, No. 5--6, 323--336 (2019; Zbl 1424.35279)
Park, Bae Jun Some maximal inequalities on Triebel-Lizorkin spaces for \(p = \infty\). (English) Zbl 1419.42015 Math. Nachr. 292, No. 5, 1137-1150 (2019). Reviewer: Hans Triebel (Jena) MSC: 42B25 46E35 42B35 PDF BibTeX XML Cite \textit{B. J. Park}, Math. Nachr. 292, No. 5, 1137--1150 (2019; Zbl 1419.42015) Full Text: DOI arXiv
Clop, Albert; Giova, Raffaella; Passarelli di Napoli, Antonia Besov regularity for solutions of \(p\)-harmonic equations. (English) Zbl 1418.35149 Adv. Nonlinear Anal. 8, 762-778 (2019). MSC: 35J60 35B65 PDF BibTeX XML Cite \textit{A. Clop} et al., Adv. Nonlinear Anal. 8, 762--778 (2019; Zbl 1418.35149) Full Text: DOI
Malinnikova, Eugenia; Osipov, Nikolay N. Two types of Rubio de Francia operators on Triebel-Lizorkin and Besov spaces. (English) Zbl 1415.42020 J. Fourier Anal. Appl. 25, No. 3, 804-818 (2019). MSC: 42B35 46E35 PDF BibTeX XML Cite \textit{E. Malinnikova} and \textit{N. N. Osipov}, J. Fourier Anal. Appl. 25, No. 3, 804--818 (2019; Zbl 1415.42020) Full Text: DOI arXiv
Seeger, Andreas; Trebels, Walter Embeddings for spaces of Lorentz-Sobolev type. (English) Zbl 1420.46031 Math. Ann. 373, No. 3-4, 1017-1056 (2019). Reviewer: Hans Triebel (Jena) MSC: 46E35 46E30 42B15 42B25 PDF BibTeX XML Cite \textit{A. Seeger} and \textit{W. Trebels}, Math. Ann. 373, No. 3--4, 1017--1056 (2019; Zbl 1420.46031) Full Text: DOI arXiv
Li, Wenchang; Xu, Jingshi Weak Triebel-Lizorkin spaces with variable integrability, summability and smoothness. (English) Zbl 1420.46029 Publ. Res. Inst. Math. Sci. 55, No. 2, 259-282 (2019). Reviewer: Maria Alessandra Ragusa (Catania) MSC: 46E35 42B25 PDF BibTeX XML Cite \textit{W. Li} and \textit{J. Xu}, Publ. Res. Inst. Math. Sci. 55, No. 2, 259--282 (2019; Zbl 1420.46029) Full Text: DOI
Karak, Nijjwal Measure density and embeddings of Hajłasz-Besov and Hajłasz-Triebel-Lizorkin spaces. (English) Zbl 1423.46053 J. Math. Anal. Appl. 475, No. 1, 966-984 (2019). MSC: 46E35 30L99 PDF BibTeX XML Cite \textit{N. Karak}, J. Math. Anal. Appl. 475, No. 1, 966--984 (2019; Zbl 1423.46053) Full Text: DOI
Hakim, Denny Ivanal; Nogayama, Toru; Sawano, Yoshihiro Complex interpolation of smoothness Triebel-Lizorkin-Morrey spaces. (English) Zbl 1414.42029 Math. J. Okayama Univ. 61, 99-128 (2019). Reviewer: Hans Triebel (Jena) MSC: 42B35 46E35 41A17 PDF BibTeX XML Cite \textit{D. I. Hakim} et al., Math. J. Okayama Univ. 61, 99--128 (2019; Zbl 1414.42029)
Hobus, Pascal; Saal, Jürgen Triebel-Lizorkin-Lorentz spaces and the Navier-Stokes equations. (English) Zbl 1414.42030 Z. Anal. Anwend. 38, No. 1, 41-72 (2019). Reviewer: Hans Triebel (Jena) MSC: 42B35 46E35 76D05 35Q35 PDF BibTeX XML Cite \textit{P. Hobus} and \textit{J. Saal}, Z. Anal. Anwend. 38, No. 1, 41--72 (2019; Zbl 1414.42030) Full Text: DOI arXiv
Cleanthous, G.; Georgiadis, A. G.; Nielsen, M. Molecular decomposition and Fourier multipliers for holomorphic Besov and Triebel-Lizorkin spaces. (English) Zbl 1417.30052 Monatsh. Math. 188, No. 3, 467-493 (2019). Reviewer: Ilie Valuşescu (Bucureşti) MSC: 30H25 30B30 30B40 30H10 PDF BibTeX XML Cite \textit{G. Cleanthous} et al., Monatsh. Math. 188, No. 3, 467--493 (2019; Zbl 1417.30052) Full Text: DOI
Yang, Qixiang; Wang, Hua Wavelets and local Triebel-Lizorkin spaces with the Lorentz index. (English) Zbl 1407.35157 Math. Methods Appl. Sci. 42, No. 1, 237-249 (2019). MSC: 35Q30 76D03 42B35 46E30 PDF BibTeX XML Cite \textit{Q. Yang} and \textit{H. Wang}, Math. Methods Appl. Sci. 42, No. 1, 237--249 (2019; Zbl 1407.35157) Full Text: DOI
Liu, Hsun-Wu; Wang, Kunchuan A characterization of weighted Carleson measure spaces. (English) Zbl 1406.42031 Taiwanese J. Math. 23, No. 1, 103-127 (2019). MSC: 42B35 PDF BibTeX XML Cite \textit{H.-W. Liu} and \textit{K. Wang}, Taiwanese J. Math. 23, No. 1, 103--127 (2019; Zbl 1406.42031) Full Text: DOI Euclid
Bousquet, Pierre; Russ, Emmanuel; Wang, Yi; Yung, Po-Lam Approximation in higher-order Sobolev spaces and Hodge systems. (English) Zbl 1417.46021 J. Funct. Anal. 276, No. 5, 1430-1478 (2019). MSC: 46E35 58A10 PDF BibTeX XML Cite \textit{P. Bousquet} et al., J. Funct. Anal. 276, No. 5, 1430--1478 (2019; Zbl 1417.46021) Full Text: DOI
Drihem, Douadi Complex interpolation of variable Triebel-Lizorkin spaces. (English) Zbl 1416.46035 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 179, 72-90 (2019). MSC: 46E35 46B70 26B35 PDF BibTeX XML Cite \textit{D. Drihem}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 179, 72--90 (2019; Zbl 1416.46035) Full Text: DOI arXiv
Bissar, Samira; Moussai, Madani Pointwise multiplication in the realized homogeneous Besov and Triebel-Lizorkin spaces. (English) Zbl 1433.46023 Probl. Anal. Issues Anal. 7(25), No. 1, 3-22 (2018). MSC: 46E35 PDF BibTeX XML Cite \textit{S. Bissar} and \textit{M. Moussai}, Probl. Anal. Issues Anal. 7(25), No. 1, 3--22 (2018; Zbl 1433.46023) Full Text: DOI MNR
Asami, Keisuke; Sawano, Yoshihiro Non-smooth decomposition of homogeneous Triebel-Lizorkin-Morrey spaces. (English) Zbl 1416.42029 Commentat. Math. 58, No. 1-2, 37-56 (2018). MSC: 42B35 41A17 PDF BibTeX XML Cite \textit{K. Asami} and \textit{Y. Sawano}, Commentat. Math. 58, No. 1--2, 37--56 (2018; Zbl 1416.42029) Full Text: DOI
Liu, Feng; Wu, Yurong Regularity of the Kakeya maximal operator and its fractional variant. (Chinese. English summary) Zbl 1424.42044 Acta Math. Sin., Chin. Ser. 61, No. 5, 783-800 (2018). MSC: 42B25 46E35 PDF BibTeX XML Cite \textit{F. Liu} and \textit{Y. Wu}, Acta Math. Sin., Chin. Ser. 61, No. 5, 783--800 (2018; Zbl 1424.42044)
Cai, Gang Well-posedness of second order degenerate differential equations with finite delay in Triebel-Lizorkin spaces. (Chinese. English summary) Zbl 1424.34266 Acta Math. Sin., Chin. Ser. 61, No. 5, 741-750 (2018). MSC: 34K30 34K10 34K32 PDF BibTeX XML Cite \textit{G. Cai}, Acta Math. Sin., Chin. Ser. 61, No. 5, 741--750 (2018; Zbl 1424.34266)
Xiong, Xiao; Xu, Quanhua; Yin, Zhi Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori. (English) Zbl 1414.46045 Memoirs of the American Mathematical Society 1203. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-2806-8/print; 978-1-4704-4375-7/ebook). vi, 122 p. (2018). MSC: 46L52 46L51 46L87 47L25 47L65 43A99 PDF BibTeX XML Cite \textit{X. Xiong} et al., Sobolev, Besov and Triebel-Lizorkin spaces on quantum tori. Providence, RI: American Mathematical Society (AMS) (2018; Zbl 1414.46045) Full Text: DOI arXiv
Rydhe, Eskil On the characterization of Triebel-Lizorkin type spaces of analytic functions. (English) Zbl 1405.30058 J. Fourier Anal. Appl. 24, No. 6, 1491-1517 (2018). MSC: 30H99 46E15 46E40 PDF BibTeX XML Cite \textit{E. Rydhe}, J. Fourier Anal. Appl. 24, No. 6, 1491--1517 (2018; Zbl 1405.30058) Full Text: DOI
Fang, Jingxuan; Zhao, Jiman Triebel-Lizorkin spaces with variable smoothness and integrability on Lie groups of polynomial growth. (English) Zbl 1403.42018 J. Pseudo-Differ. Oper. Appl. 9, No. 4, 891-902 (2018). MSC: 42B25 43A80 46E30 PDF BibTeX XML Cite \textit{J. Fang} and \textit{J. Zhao}, J. Pseudo-Differ. Oper. Appl. 9, No. 4, 891--902 (2018; Zbl 1403.42018) Full Text: DOI
Bonk, Mario; Saksman, Eero; Soto, Tomás Triebel-Lizorkin spaces on metric spaces via hyperbolic fillings. (English) Zbl 1412.42058 Indiana Univ. Math. J. 67, No. 4, 1625-1663 (2018). Reviewer: Javier Soria (Barcelona) MSC: 42B35 46E35 PDF BibTeX XML Cite \textit{M. Bonk} et al., Indiana Univ. Math. J. 67, No. 4, 1625--1663 (2018; Zbl 1412.42058) Full Text: DOI
Xia, Runlian; Xiong, Xiao Operator-valued Triebel-Lizorkin spaces. (English) Zbl 06965992 Integral Equations Oper. Theory 90, No. 6, Paper No. 65, 65 p. (2018). MSC: 46E35 46L52 42B30 46L07 47L65 PDF BibTeX XML Cite \textit{R. Xia} and \textit{X. Xiong}, Integral Equations Oper. Theory 90, No. 6, Paper No. 65, 65 p. (2018; Zbl 06965992) Full Text: DOI arXiv
Yabuta, Kôzô; Yang, Minsuk Besov and Triebel – Lizorkin space estimates for fractional diffusion. (English) Zbl 1401.42022 Hiroshima Math. J. 48, No. 2, 141-158 (2018). MSC: 42B25 26D10 PDF BibTeX XML Cite \textit{K. Yabuta} and \textit{M. Yang}, Hiroshima Math. J. 48, No. 2, 141--158 (2018; Zbl 1401.42022) Full Text: Euclid
Gonçalves, Helena F.; Moura, Susana D. Characterization of Triebel-Lizorkin type spaces with variable exponents via maximal functions, local means and non-smooth atomic decompositions. (English) Zbl 1401.42019 Math. Nachr. 291, No. 13, 2024-2044 (2018). MSC: 42B25 42B35 46E35 PDF BibTeX XML Cite \textit{H. F. Gonçalves} and \textit{S. D. Moura}, Math. Nachr. 291, No. 13, 2024--2044 (2018; Zbl 1401.42019) Full Text: DOI
Drihem, Douadi Complex interpolation of Herz-type Triebel-Lizorkin spaces. (English) Zbl 1409.46013 Math. Nachr. 291, No. 13, 2008-2023 (2018). MSC: 46B70 46E35 PDF BibTeX XML Cite \textit{D. Drihem}, Math. Nachr. 291, No. 13, 2008--2023 (2018; Zbl 1409.46013) Full Text: DOI
Fang, Jingxuan; Zhao, Jiman Variable homogeneous Besov and Triebel-Lizorkin spaces on stratified groups. (Chinese. English summary) Zbl 1413.42047 Acta Math. Sci., Ser. A, Chin. Ed. 38, No. 1, 34-45 (2018). MSC: 42B35 PDF BibTeX XML Cite \textit{J. Fang} and \textit{J. Zhao}, Acta Math. Sci., Ser. A, Chin. Ed. 38, No. 1, 34--45 (2018; Zbl 1413.42047)
Garrigós, Gustavo; Seeger, Andreas; Ullrich, Tino The Haar system as a Schauder basis in spaces of Hardy-Sobolev type. (English) Zbl 1405.46025 J. Fourier Anal. Appl. 24, No. 5, 1319-1339 (2018). MSC: 46E35 46B15 42C40 PDF BibTeX XML Cite \textit{G. Garrigós} et al., J. Fourier Anal. Appl. 24, No. 5, 1319--1339 (2018; Zbl 1405.46025) Full Text: DOI arXiv
Qian, Tao; Yang, Qixiang Wavelets and holomorphic functions. (English) Zbl 1397.30041 Complex Anal. Oper. Theory 12, No. 6, 1421-1442 (2018). MSC: 30H99 PDF BibTeX XML Cite \textit{T. Qian} and \textit{Q. Yang}, Complex Anal. Oper. Theory 12, No. 6, 1421--1442 (2018; Zbl 1397.30041) Full Text: DOI
Liu, Feng A note of Littlewood-Paley functions on Triebel-Lizorkin spaces. (English) Zbl 1392.42013 Bull. Korean Math. Soc. 55, No. 2, 659-672 (2018). MSC: 42B20 42B25 PDF BibTeX XML Cite \textit{F. Liu}, Bull. Korean Math. Soc. 55, No. 2, 659--672 (2018; Zbl 1392.42013) Full Text: Link
Cleanthous, G.; Georgiadis, A. G.; Nielsen, M. Fourier multipliers on decomposition spaces of modulation and Triebel-Lizorkin type. (English) Zbl 1395.42022 Mediterr. J. Math. 15, No. 3, Paper No. 122, 14 p. (2018). MSC: 42B15 42B25 42B35 46F10 PDF BibTeX XML Cite \textit{G. Cleanthous} et al., Mediterr. J. Math. 15, No. 3, Paper No. 122, 14 p. (2018; Zbl 1395.42022) Full Text: DOI
Georgiadis, Athanasios G.; Nielsen, Morten Spectral multipliers on spaces of distributions associated with non-negative self-adjoint operators. (English) Zbl 1398.58008 J. Approx. Theory 234, 1-19 (2018). Reviewer: Yamilet del Carmen Quintana Mato (Caracas) MSC: 58J35 58J40 43A15 43A85 46E35 46F05 PDF BibTeX XML Cite \textit{A. G. Georgiadis} and \textit{M. Nielsen}, J. Approx. Theory 234, 1--19 (2018; Zbl 1398.58008) Full Text: DOI
Sawano, Yoshihiro Theory of Besov spaces. (English) Zbl 1414.46004 Developments in Mathematics 56. Singapore: Springer (ISBN 978-981-13-0835-2/hbk; 978-981-13-0836-9/ebook). xxiii, 945 p. (2018). Reviewer: Maria Alessandra Ragusa (Catania) MSC: 46-02 46E35 46E40 PDF BibTeX XML Cite \textit{Y. Sawano}, Theory of Besov spaces. Singapore: Springer (2018; Zbl 1414.46004) Full Text: DOI