×

A Taylor series-based continuation method for solutions of dynamical systems. (English) Zbl 1430.37099

Summary: This paper describes a generic Taylor series-based continuation method, the so-called asymptotic numerical method, to compute the bifurcation diagrams of nonlinear systems. The key point of this approach is the quadratic recast of the equations as it allows to treat in the same way a wide range of dynamical systems and their solutions. Implicit differential-algebraic equations, forced or autonomous, possibly with time-delay or fractional-order derivatives are handled in the same framework. The static, periodic and quasi-periodic solutions can be continued and also transient solutions.

MSC:

37M20 Computational methods for bifurcation problems in dynamical systems
34E05 Asymptotic expansions of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Barton, Da; Krauskopf, B.; Wilson, Re, Collocation schemes for periodic solutions of neutral delay differential equations, J. Differ. Equ. Appl., 12, 11, 1087-1101 (2006) · Zbl 1108.65089
[2] Bentvelsen, B.; Lazarus, A., Modal and stability analysis of structures in periodic elastic states: application to the ziegler column, Nonlinear Dyn., 91, 2, 1349-1370 (2018)
[3] Beyn, W.J., Champneys, A., Doedel, E., Govaerts, W., Kuznetsov, Y.A., Sandstede, B.: Numerical continuation, and computation of normal forms. In: Handbook of Dynamical Systems III: Towards Applications. Citeseer (2001) · Zbl 1034.37048
[4] Boumédiène, F.; Miloudi, A.; Cadou, J.; Duigou, L.; Boutyour, E., Nonlinear forced vibration of damped plates by an asymptotic numerical method, Comput. Struct., 87, 23-24, 1508-1515 (2009)
[5] Cameron, T.; Griffin, J., An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems, J. Appl. Mech., 56, 1, 149-154 (1989) · Zbl 0685.73036
[6] Charpentier, I., Cochelin, B.: Towards a full higher order ad-based continuation and bifurcation framework. Optim. Methods Softw. (2018) · Zbl 1453.65439
[7] Charpentier, Isabelle; Lejeune, Arnaud; Potier-Ferry, Michel, The Diamant Approach for an Efficient Automatic Differentiation of the Asymptotic Numerical Method, Advances in Automatic Differentiation, 139-149 (2008), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 1152.65415
[8] Claude, B.; Duigou, L.; Girault, G.; Cadou, Jm, Eigensolutions to a vibroacoustic interior coupled problem with a perturbation method, Comptes Rendus Méc., 345, 2, 130-136 (2017)
[9] Cochelin, B., A path-following technique via an asymptotic-numerical method, Comput. Struct., 53, 5, 1181-1192 (1994) · Zbl 0918.73337
[10] Cochelin, B.; Damil, N.; Potier-Ferry, M., Asymptotic-numerical methods and pade approximants for non-linear elastic structures, Int. J. Numer. Methods Eng., 37, 7, 1187-1213 (1994) · Zbl 0805.73076
[11] Cochelin, B.; Damil, N.; Potier-Ferry, M., The asymptotic-numerical method: an efficient perturbation technique for nonlinear structural mechanics, Revue européenne des éléments finis, 3, 2, 281-297 (1994) · Zbl 0810.73045
[12] Cochelin, B.; Vergez, C., A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions, J. Sound Vib., 324, 1, 243-262 (2009)
[13] Dhooge, A.; Govaerts, W.; Kuznetsov, Ya, Matcont: a matlab package for numerical bifurcation analysis of odes, ACM Trans. Math. Softw., 29, 2, 141-164 (2003) · Zbl 1070.65574
[14] Doedel, Ej, Auto: a program for the automatic bifurcation analysis of autonomous systems, Congr. Numer., 30, 265-284 (1981)
[15] Doedel, Ej; Govaerts, W.; Kuznetsov, Ya, Computation of periodic solution bifurcations in odes using bordered systems, SIAM J. Numer. Anal., 41, 2, 401-435 (2003) · Zbl 1066.65154
[16] Doedel, E.J., Heinemann, R.F.: Numerical computation of periodic solution branches and oscillatory dynamics of the stirred tank reactor with A yields B yields C reactions. Tech. rep., Wisconsin Univ-Madison Mathematics Research Center (1982)
[17] Engelborghs, K.; Luzyanina, T.; Roose, D., Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Softw., 28, 1, 1-21 (2002) · Zbl 1070.65556
[18] Farner, S.; Vergez, C.; Kergomard, J.; Lizée, A., Contribution to harmonic balance calculations of self-sustained periodic oscillations with focus on single-reed instruments, J. Acoust. Soc. Am., 119, 3, 1794-1804 (2006)
[19] Fontanela, F.; Grolet, A.; Salles, L.; Hoffmann, N., Computation of quasi-periodic localised vibrations in nonlinear cyclic and symmetric structures using harmonic balance methods, J. Sound Vib., 438, 54-65 (2019)
[20] Fritzsche, K.; Grauert, H., From Holomorphic Functions to Complex Manifolds (2012), Berlin: Springer, Berlin
[21] Griewank, A.; Walther, A., Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation (2008), Philadelphia: SIAM, Philadelphia · Zbl 1159.65026
[22] Guillot, Louis; Cochelin, Bruno; Vergez, Christophe, A generic and efficient Taylor series-based continuation method using a quadratic recast of smooth nonlinear systems, International Journal for Numerical Methods in Engineering, 119, 4, 261-280 (2019) · Zbl 1430.37099
[23] Guillot, Louis; Vergez, Christophe; Cochelin, Bruno, Continuation of periodic solutions of various types of delay differential equations using asymptotic numerical method and harmonic balance method, Nonlinear Dynamics, 97, 1, 123-134 (2019) · Zbl 1430.34077
[24] Guillot, L.; Vigué, P.; Vergez, C.; Cochelin, B., Continuation of quasi-periodic solutions with two-frequency harmonic balance method, J. Sound Vib., 394, 434-450 (2017)
[25] Jean, A.; Nelson, H., Periodic response investigation of large order non-linear rotordynamic systems using collocation, J. Sound Vib., 143, 3, 473-489 (1990)
[26] Karkar, S.; Cochelin, B.; Vergez, C., A comparative study of the harmonic balance method and the orthogonal collocation method on stiff nonlinear systems, J. Sound Vib., 333, 12, 2554-2567 (2014)
[27] Keller, H., Lectures on numerical methods in bifurcation problems, Appl. Math., 217, 50 (1987)
[28] Khibnik, Ai; Kuznetsov, Ya; Levitin, Vv; Nikolaev, Ev, Continuation techniques and interactive software for bifurcation analysis of odes and iterated maps, Phys. D: Nonlinear Phenom., 62, 1-4, 360-371 (1993) · Zbl 0784.34030
[29] Krylov, N.M., Bogoliubov, N.N.: Introduction to Non-linear Mechanics. Princeton University Press (1949 (English translation of Russian edition from 1936) · Zbl 0063.03382
[30] marquis de Laplace, P.S.: Traité de mécanique céleste. Crapelet (1799)
[31] Lazarus, A.; Thomas, O., A harmonic-based method for computing the stability of periodic solutions of dynamical systems, Comptes Rendus Méc., 338, 9, 510-517 (2010) · Zbl 1223.37106
[32] Leimkuhler, B.; Reich, S., Simulating Hamiltonian Dynamics (2004), Cambridge: Cambridge University Press, Cambridge · Zbl 1069.65139
[33] Lévy, L., Précis élémentaire de la théorie des fonctions elliptiques avec tables numériques et applications (1898), Paris: Gauthier-Villars, Paris · JFM 29.0381.01
[34] Liao, S., Beyond Perturbation: Introduction to the Homotopy Analysis Method (2003), London: Chapman and Hall/CRC, London
[35] Munoz-Almaraz, Fj; Freire, E.; Galán, J.; Doedel, E.; Vanderbauwhede, A., Continuation of periodic orbits in conservative and hamiltonian systems, Phys. D: Nonlinear Phenom., 181, 1-2, 1-38 (2003) · Zbl 1024.37037
[36] Nakhla, M.; Vlach, J., A piecewise harmonic balance technique for determination of periodic response of nonlinear systems, IEEE Trans. Circuits Syst., 23, 2, 85-91 (1976)
[37] Newmark, Nm, A method of computation for structural dynamics, J. Eng. Mech. Div., 85, 3, 67-94 (1959)
[38] Peeters, M.; Viguié, R.; Sérandour, G.; Kerschen, G.; Golinval, Jc, Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques, Mech. Syst. Signal Process., 23, 1, 195-216 (2009)
[39] Schilder, F.; Osinga, Hm; Vogt, W., Continuation of quasi-periodic invariant tori, SIAM J. Appl. Dyn. Syst., 4, 3, 459-488 (2005) · Zbl 1090.37057
[40] Seydel, R., From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis (1988), Amsterdam: North-Holland, Amsterdam · Zbl 0652.34059
[41] Vigué, P.: Solutions périodiques et quasi-périodiques de systèmes dynamiques d’ordre entier ou fractionnaire : applications à la corde frottée. Ph.D. thesis (2017). http://www.theses.fr/2017AIXM0306. Thèse de doctorat dirigée par Vergez, Christophe et Cochelin, Bruno Sciences de l’ingénieur. Acoustique Aix-Marseille 2017
[42] Vigué, Pierre; Vergez, Christophe; Lombard, Bruno; Cochelin, Bruno, Continuation of periodic solutions for systems with fractional derivatives, Nonlinear Dynamics, 95, 1, 479-493 (2018)
[43] Zhou, B.; Thouverez, F.; Lenoir, D., A variable-coefficient harmonic balance method for the prediction of quasi-periodic response in nonlinear systems, Mech. Syst. Signal Process., 64, 233-244 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.