×

Application of Chebyshev tau method for bending analysis of elastically restrained edge functionally graded nano/micro-scaled sandwich beams, under non-uniform normal and shear loads. (English) Zbl 1452.65370

Summary: In this study, for the first time, an approximate solution procedure based on the Chebyshev tau method (CTM) is developed for bending analysis of functionally graded nano/micro-scaled sandwich beams. The proposed approach has the advantage of decreasing the problem to the solution of a system of algebraic equations, which may then be solved by any numerical method. In the CTM, the solution is approximated via a truncated Chebyshev series expansion and the Chebyshev polynomials are used as the test function. Based on the proposed technique, sandwich beams with elastically restrained edges under arbitrary non-uniform distributed normal and shear loads can be analyzed. The effectiveness of the CTM is illustrated by comparison of the obtained results for various end supports with those extracted from the ABAQUS software. In each considered cases, the numerical results indicate that the proposed scheme is of high accuracy and is efficient for solving the ordinary differential equations and systems of them.

MSC:

65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
74K10 Rods (beams, columns, shafts, arches, rings, etc.)

Software:

ABAQUS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006) · Zbl 1093.76002 · doi:10.1007/978-3-540-30726-6
[2] Kong, W.; Wu, X., Chebyshev tau matrix method for Poisson-type equations in irregular domain, J. Comput. Appl. Math., 228, 158-167 (2009) · Zbl 1165.65081 · doi:10.1016/j.cam.2008.09.011
[3] Lanczos, C.: Applied Analysis, pp. 464-517. Prentice-Hall, Englewood Cliffs (1964)
[4] Johnson, D.: Chebyshev Polynomials in the Spectral Tau Method and Applications to Eigenvalue Problems. University of Florida Gainesville, Florida (1996)
[5] Siyyam, HI; Syam, MI, An accurate solution of the Poisson equation by the Chebyshev-tau method, J. Comput. Appl. Math., 85, 1-10 (1997) · Zbl 0890.65115 · doi:10.1016/S0377-0427(97)00104-0
[6] Ahmadi, MR; Adibi, H., The Chebyshev Tau technique for the solution of Laplace’s equation, Appl. Math. Comput., 84, 895-900 (2007) · Zbl 1114.65146
[7] Saadatmandi, A.; Dehghan, M., Numerical solution of hyperbolic telegraph equation using the Chebyshev tau method, Numer. Methods Partial Differ. Equ., 26, 239-252 (2010) · Zbl 1186.65136 · doi:10.1002/num.20442
[8] Wang, H., An efficient Chebyshev-Tau spectral method for Ginzburg-Landau-Schrödinger equations, Comput. Phys. Commun., 181, 325-340 (2010) · Zbl 1205.65278 · doi:10.1016/j.cpc.2009.10.007
[9] Lee, J., Application of Chebyshev-tau method to the free vibration analysis of stepped beams, Int. J. Mech. Sci., 101-102, 411-420 (2015) · doi:10.1016/j.ijmecsci.2015.08.012
[10] Eltaher, MA; Khairy, A.; Sadoun, AM; Omar, FA, Static and buckling analysis of functionally graded Timoshenko nanobeams, Appl. Math. Comput., 229, 283-295 (2014) · Zbl 1364.74014
[11] Foudal, N.; El-midany, T.; Sadoun, AM, Bending, buckling and vibration of a functionally graded porous beam using finite elements, J. Appl. Comput. Mech., 3, 274-282 (2017)
[12] Sobczak, J., Drenchev, L.: Functionally Graded Materials Processing and Modeling. Motor Transport Institute-Warsaw Foundry Research Institute, Cracow (2008)
[13] Smith, B.; Szyniszewski, S.; Hajjar, J.; Schafer, B.; Arwade, S., Steel foam for structures: A review of applications, manufacturing and material properties, J. Constr. Steel Res., 71, 1-10 (2012) · doi:10.1016/j.jcsr.2011.10.028
[14] Ashby, M.F., Evans, T., Fleck, N.A., Hutchinson, J., Wadley, H., Gibson, L.: Metal Foams: A Design Guide. Elsevier, Amsterdam (2000)
[15] Rabiei, A.; Vendra, L., A comparison of composite metal foam’s properties and other comparable metal foams, Mater. Lett., 63, 533-536 (2009) · doi:10.1016/j.matlet.2008.11.002
[16] Lim, TJ; Smith, B.; McDowell, D., Behavior of a random hollow sphere metal foam, Acta Mater., 50, 2867-2879 (2002) · doi:10.1016/S1359-6454(02)00111-8
[17] Raj, S.; Ghosn, L.; Lerch, B.; Hebsur, M.; Cosgriff, L.; Fedor, J., Mechanical properties of 17-4PH stainless steel foam panels, Mater. Sci. Eng., A, 456, 305-316 (2007) · doi:10.1016/j.msea.2006.11.142
[18] Park, C.; Nutt, S., Anisotropy and strain localization in steel foam, Mater. Sci. Eng., A, 299, 68-74 (2001) · doi:10.1016/S0921-5093(00)01418-0
[19] Badiche, X.; Forest, S.; Guibert, T.; Bienvenu, Y.; Bartout, JD; Ienny, P.; Croset, M.; Bernet, H., Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials, Mater. Sci. Eng., A, 289, 276-288 (2000) · doi:10.1016/S0921-5093(00)00898-4
[20] Gibson, L., Mechanical behavior of metallic foams, Annu. Rev. Mater. Sci., 30, 191-227 (2000) · doi:10.1146/annurev.matsci.30.1.191
[21] Kwon, Y.; Cooke, R.; Park, C., Representative unit-cell models for open-cell metal foams with or without elastic filler, Mater. Sci. Eng., A, 343, 63-70 (2003) · doi:10.1016/S0921-5093(02)00360-X
[22] Sanders, W.; Gibson, L., Mechanics of hollow sphere foams, Mater. Sci. Eng., A, 347, 70-85 (2003) · doi:10.1016/S0921-5093(02)00583-X
[23] Warren, W.; Kraynik, A., The linear elastic properties of open-cell foams, J. Appl. Mech., 55, 341-346 (1988) · doi:10.1115/1.3173680
[24] Banhart, J., Manufacture, characterisation and application of cellular metals and metal foams, Progr. Mater. Sci., 46, 559-632 (2001) · doi:10.1016/S0079-6425(00)00002-5
[25] Avalle, M.; Belingardi, G.; Montanini, R., Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram, Int. J. Impact Eng., 25, 455-472 (2001) · doi:10.1016/S0734-743X(00)00060-9
[26] Rajendran, R.; Sai, KP; Chandrasekar, B.; Gokhale, A.; Basu, S., Preliminary investigation of aluminium foam as an energy absorber for nuclear transportation cask, Mater. Des., 29, 1732-1739 (2008) · doi:10.1016/j.matdes.2008.03.028
[27] Mortensen, A.; Suresh, S., Functionally graded metals and metal-ceramic composites. 1, Process. Int. Mater. Rev., 40, 239-265 (1995) · doi:10.1179/imr.1995.40.6.239
[28] Chen, D.; Yang, J.; Kitipornch, S., Elastic buckling and static bending of shear deformable functionally graded porous beam, Compos. Struct., 133, 54-61 (2015) · doi:10.1016/j.compstruct.2015.07.052
[29] Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman and Hall/CRC, New York (2003) · Zbl 1015.33001
[30] Gardner, DR; Trogdon, SA, A modified tau spectral method that eliminates spurious eigenvalues, J. Comput. Phys., 80, 137-167 (1989) · Zbl 0661.65084 · doi:10.1016/0021-9991(89)90093-4
[31] Lanczos, C.: Applied Analysis. Prentice Hall Inc., Englewood Cliffs (1956) · Zbl 0111.12403
[32] Fox, L., Chebyshev methods for ordinary differential equations, Comput. J., 4, 318-331 (1962) · Zbl 0103.34203 · doi:10.1093/comjnl/4.4.318
[33] Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods. SIAM, Philadelphia (1977) · Zbl 0412.65058 · doi:10.1137/1.9781611970425
[34] Orszag, SA, Galerkin approximations to flows within slabs, spheres, and cylinders, Phys. Rev. Lett., 26, 1100 (1971) · doi:10.1103/PhysRevLett.26.1100
[35] Orszag, SA, Accurate solution of the Orr-Sommerfeld stability equation, J. Fluid Mech., 50, 689-703 (1971) · Zbl 0237.76027 · doi:10.1017/S0022112071002842
[36] Alipour, MM, Effects of elastically restrained edges on FG sandwich annular plates by using a novel solution procedure based on layerwise formulation, Arch. Civ. Mech. Eng., 16, 678-694 (2016) · doi:10.1016/j.acme.2016.04.015
[37] Alipour, MM; Shariyat, M., Analytical layerwise stress and deformation analysis of laminated composite plates with arbitrary shapes of interfacial imperfections and discontinuous lateral deflections, Compos. Struct., 200, 88-102 (2018) · doi:10.1016/j.compstruct.2018.05.037
[38] Alipour, MM, A novel economical analytical method for bending and stress analysis of functionally graded sandwich circular plates with general elastic edge conditions, subjected to various loads, Compos. B Eng., 95, 48-63 (2016) · doi:10.1016/j.compositesb.2016.03.090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.