Posch, Harald A. Symmetry properties of orthogonal and covariant Lyapunov vectors and their exponents. (English) Zbl 1331.70058 J. Phys. A, Math. Theor. 46, No. 25, Article ID 254006, 11 p. (2013). MSC: 70K20 70G45 PDF BibTeX XML Cite \textit{H. A. Posch}, J. Phys. A, Math. Theor. 46, No. 25, Article ID 254006, 11 p. (2013; Zbl 1331.70058) Full Text: DOI
Hedrih, Katica R. Energy and nonlinear dynamics of hybrid systems. (English) Zbl 1255.70024 Luo, Albert C.J. (ed.) et al., Dynamical systems and methods. Based on the 3rd conference on nonlinear science and complexity (NSC), Ankara, Turkey, July 27–31, 2010. Berlin: Springer (ISBN 978-1-4614-0453-8/hbk; 978-1-4614-0454-5/ebook). 29-83 (2012). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 70K99 70K50 PDF BibTeX XML Cite \textit{K. R. Hedrih}, in: Dynamical systems and methods. Based on the 3rd conference on nonlinear science and complexity (NSC), Ankara, Turkey, July 27--31, 2010. Berlin: Springer. 29--83 (2012; Zbl 1255.70024) Full Text: DOI
Martínez, R.; Simó, C. Non-integrability of Hamiltonian systems through high order variational equations: summary of results and examples. (English) Zbl 1229.37058 Regul. Chaotic Dyn. 14, No. 3, 323-348 (2009). MSC: 37J30 70H07 34M35 PDF BibTeX XML Cite \textit{R. Martínez} and \textit{C. Simó}, Regul. Chaotic Dyn. 14, No. 3, 323--348 (2009; Zbl 1229.37058) Full Text: DOI
Alasty, Aria; Shabani, Rasool Chaotic motions and fractal basin boundaries in spring-pendulum system. (English) Zbl 1168.70319 Nonlinear Anal., Real World Appl. 7, No. 1, 81-95 (2006). MSC: 70K55 37D45 PDF BibTeX XML Cite \textit{A. Alasty} and \textit{R. Shabani}, Nonlinear Anal., Real World Appl. 7, No. 1, 81--95 (2006; Zbl 1168.70319) Full Text: DOI
Al Majid, Ahmad; Dufour, Régis An event dimension for modeling damping due to time-varying forcing frequency. (English) Zbl 0981.70015 Nonlinear Dyn. 23, No. 4, 303-318 (2000). MSC: 70J35 70H40 70-05 PDF BibTeX XML Cite \textit{A. Al Majid} and \textit{R. Dufour}, Nonlinear Dyn. 23, No. 4, 303--318 (2000; Zbl 0981.70015) Full Text: DOI
Lee, Won Kyoung; Park, Hae Dong Second-order approximation for chaotic responses of a harmonically excited spring-pendulum system. (English) Zbl 1342.74087 Int. J. Non-Linear Mech. 34, No. 4, 749-757 (1999). MSC: 74H65 PDF BibTeX XML Cite \textit{W. K. Lee} and \textit{H. D. Park}, Int. J. Non-Linear Mech. 34, No. 4, 749--757 (1999; Zbl 1342.74087) Full Text: DOI
Churchill, Richard C.; Delgado, Joaquin; Rod, David L. The spring-pendulum system and the Riemann equation. (English) Zbl 0997.70015 Lacomba, Ernesto A. (ed.) et al., New trends for Hamiltonian systems and celestial mechanics. Papers from the 2nd international symposium on Hamiltonian systems and celestial mechanics, Cocoyoc, Mexico, September 13-17, 1994. Singapore: World Scientific. Adv. Ser. Nonlinear Dyn. 8, 97-103 (1996). Reviewer: Paulo R.Rodrigues (Rio de Janeiro) MSC: 70H07 70K99 PDF BibTeX XML Cite \textit{R. C. Churchill} et al., Adv. Ser. Nonlinear Dyn. 8, 97--103 (1996; Zbl 0997.70015)