×

Growth and instability in elastic tissues. (English) Zbl 1120.74336

Summary: The effect of growth in the stability of elastic materials is studied. From a stability perspective, growth and resorption have two main effects. First a change of mass modifies the geometry of the system and possibly the critical lengths involved in stability thresholds. Second, growth may depend on stress but also it may induce residual stresses in the material. These stresses change the effective loads and they may both stabilize or destabilize the material. To discuss the stability of growing elastic materials, the theory of finite elasticity is used as a general framework for the mechanical description of elastic properties and growth is taken into account through the multiplicative decomposition of the deformation gradient. The formalism of incremental deformation is adapted to include growth effects. As an application of the formalism, the stability of a growing neo-Hookean incompressible spherical shell under external pressure is analyzed. Numerical and analytical methods are combined to obtain explicit stability results and to identify the role of mechanical and geometric effects. The importance of residual stress is established by showing that under large anisotropic growth a spherical shell can become spontaneously unstable without any external loading.

MSC:

74B20 Nonlinear elasticity
74G60 Bifurcation and buckling
74K25 Shells
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adkins, J. E.; Rivlin, R. S., Large elastic deformations of isotropic materials. IX. The deformation of thin shells, Phil. Trans. Roy. Soc. A, 244, 505-531 (1952) · Zbl 0048.18204
[2] Alexander, H., Tensile instability of initially spherical balloons, Int. J. Engng. Sci, 9, 151-162 (1971)
[3] Ambrosi, D.; Mollica, F., The role of stress in the growth of a multicell spheroid, J. Math. Biol., 48, 477-499 (2004) · Zbl 1058.92005
[4] Audoly, B.; Boudaoud, A., Self-similar structures near boundaries in strained systems, Phys. Rev. Lett., 91, 086105 (2003)
[5] Ben Amar, M.; Pomeau, Y., Theory of dendritic growth in a weakly undercooled melt, Europhys. Lett., 2, 307-314 (1986)
[6] Casey, J.; Naghdi, P. M., A remark on the use of the decomposition \(F = F_e F_p\) in plasticity, Trans. ASME, 47, 672-675 (1980) · Zbl 0472.73035
[7] Chen, C. Y.M.; Byrne, H.; King, J. R., The influence of growth-induced stress from the surrounding medium on the development of multicell spheroids, J. Math. Biol., 43, 191-220 (2001) · Zbl 0996.92013
[8] Chen, Y. C.; Healey, T. J., Bifurcation to pear-shaped equilibria of pressurized spherical membranes, Int. J. Non-Linear Mechanics, 26, 279-291 (1991) · Zbl 0761.73056
[9] Chen, Y.; Hoger, A., Constitutive functions of elastic materials in finite growth and deformation, J. Elasticity, 59, 175-193 (2000) · Zbl 0987.74009
[10] Cowin, S. C., Strain or deformation rate dependent finite growth in soft tissues, J. Biomechanics, 29, 647-649 (1996)
[11] Cowin, S. C., Tissue growth and remodeling, Annu. Rev. Biomed. Eng., 6, 77-107 (2004)
[12] Cowin, S. C.; Hegedus, D. M., Bone remodeling I: A theory of adaptive elasticity, J. Elasticity, 6, 313-325 (1976) · Zbl 0335.73028
[13] DiCarlo, A.; Quiligotti, S., Growth and balance, Mech. Res. Comm., 29, 449-456 (2002) · Zbl 1056.74005
[14] Drozdov, A. D., Volumetric growth of viscoleastic solids, Mech. Solids, 25, 99-106 (1990)
[15] Drozdov, A. D.; Khanina, H., A model for the volumetric growth of a soft tissue, Math. Comput. Modelling, 25, 11-29 (1997) · Zbl 0874.92006
[16] Dumais, J.; Steele, C. R.; Rennich, S. C., New evidence for the role of mechanical forces in the shoot of apical meristem, J. Plant Growth Regul., 19, 7-18 (2000)
[17] Entov, V. M., Mechanical model of scoliosis, IMech. Solids, 18, 199-206 (1983)
[18] Epstein, M.; Maugin, G., Thermomechanics of volumetric growth in uniform bodies, Int. J. Plasticity, 16, 951-978 (2000) · Zbl 0979.74006
[19] Fu, Y., Some asymptotic results concerning the buckling of a spherical shell of arbitrary thickness, Int. J. Non-linear Mech., 33, 1111-1122 (1998) · Zbl 1342.74063
[20] Fung, Y. C., Biomechanics: Motion, Flow, Stress, and Growth (1990), Springer: Springer New York · Zbl 0743.92007
[21] Fung, Y. C., Biomechanics: Material Properties of Living Tissues (1993), Springer: Springer New York
[22] Garikipati, K.; Arruda, E. M.; Grosh, K.; Narayanan, H.; Clave, S., A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics, J. Nonlinear Mech. Phys., 52, 1595-1625 (2004) · Zbl 1159.74381
[23] Gent, A., Elastic instabilities of inflated rubber shells, Rubber Chem. Technol., 72, 263-268 (1999)
[24] Gooday, G. W.; Trinci, A. P.J., Wall structure and biosynthesis in fungi, (Gooday, G. W.; Lloyd, D.; Trinci, A. P.J., The Eukaryote Microbial Cell (1980), Cambridge University Press: Cambridge University Press London), 207-251
[25] Goriely, A., Ben Amar, M., 2005. Differential growth and instability in elastic shells. Phys. Rev. Lett.; Goriely, A., Ben Amar, M., 2005. Differential growth and instability in elastic shells. Phys. Rev. Lett. · Zbl 1120.74336
[26] Goriely, A.; Tabor, M., Biomechanical models of hyphal growth in actinomycetes, J. Theor. Biol., 222, 211-218 (2003) · Zbl 1464.92026
[27] Green, A. E.; Adkins, J. E., Large Elastic Deformations (1970), Clarendon Press: Clarendon Press Oxford · Zbl 0227.73067
[28] Green, A. E.; Zerna, W., Theoretical Elasticity (1992), Dover: Dover New York · Zbl 0863.73005
[29] Harold, F. M., How hyphae grow: morphogenesis explained, Protoplasm, 197, 137-147 (1997)
[30] Haughton, D. M., On non-linear stability in unconstrained non-linear elasticity, Int. J. Non-linear Mech., 39, 1181-1192 (2004) · Zbl 1348.74049
[31] Haughton, D. M.; Chen, Y., On the eversion of incompressible elastic spherical shells, Z. Angew. Math. Phys., 50, 312-326 (1999) · Zbl 0927.74046
[32] Haughton, D. M.; Kirkinis, E., A comparison of stability and bifurcation criteria for inflated spherical elastic shells, Math. Mech. Solids, 8, 561-572 (2003) · Zbl 1055.74016
[33] Haughton, D. M.; Ogden, R. W., On the incremental equations in non-linear elasticity—II. Bifurcation of pressurized spherical shells, J. Mech. Phys. Solids, 26, 111-138 (1978) · Zbl 0401.73077
[34] Haughton, D. M.; Ogden, R. W., Bifurcation of inflated circular cylinders of elastic material under axial loading—I. Membrane theory for thin-walled tubes, J. Mech. Phys. Solids, 27, 489-512 (1979) · Zbl 0442.73067
[35] Haughton, D. M.; Orr, A., On the eversion of compressible elastic cylinders, Int. J. Solids Struct., 34, 1893-1914 (1997) · Zbl 0944.74517
[36] Hill, J. M., Closed form solutions for small deformations superimposed upon the symmetrical expansion of a spherical shell, J. Elasticity, 6, 125-136 (1976) · Zbl 0346.73048
[37] Hoger, A., On the determination of residual stress in an elastic body, J. Elasticity, 16, 303-324 (1986) · Zbl 0616.73033
[38] Howard, R. J.; Valent, B., Breaking and entering: host penetration by the fungal rice blast pathogen, Magnaporthe grisea, Annu. Rev. Microbiol., 50, 491-512 (1996)
[39] Hsu, F. H., The influences of mechanical loads on the form of a growing elastic body, J. Biomech., 1, 303-311 (1968)
[40] Humphrey, J. D., Continuum biomechanics of soft biological tissues, Proc. Roy. Soc. Lond. A, 459, 3-46 (2003) · Zbl 1116.74385
[41] Humphrey, J. D.; Rajagopal, K. R., A constrained mixture model for growth and remodeling of soft tissues, Math. Models. Meth. Appl. Sci., 12, 407-430 (2002) · Zbl 1021.74026
[42] Imatani, S.; Maugin, G. A., A constitutive model for material growth and its application to three-dimensional finite element analysis, Mech. Res. Comm., 29, 477-483 (2002) · Zbl 1029.74004
[43] Keller, R.; Davidson, L. A.; Shook, D. R., How we are shaped: the biomechanics of gastrulation, Differentiation, 71, 171-205 (2003)
[44] Kessler, D. A.; Koplik, J.; Levine, H., Pattern selection in fingered growth phenomena, Adv. Phys., 37, 255-339 (1988)
[45] Klisch, S. M.; Van Dyke, T. J.; Hoger, A., A theory of volumetric growth for compressible elastic biological materials, Math. Mech. Solids, 6, 551-575 (2001) · Zbl 1022.74027
[46] Klisch, S. M.; Chen, S. S.; Sah, R. S.; Hoger, A., A growth mixture theory for cartilage with application to growth-related experiments on cartilage explants, J. Biomech. Eng., 125, 169-179 (2003)
[47] Langer, J. S., Instabilities and pattern-formation in crystal-growth, Rev. Mod. Phys., 52, 1-28 (1980)
[48] Lee, E. H., Elastic-plastic deformation at finite strains, J. Appl. Mech., 36, 1-8 (1969) · Zbl 0179.55603
[49] Lin, L. E.; Taber, L., A model for stress-induced growth in the developing heart, J. Biomech. Eng., 117, 343-349 (1995)
[50] Lubarda, V. A.; Hoger, A., On the mechanics of solids with a growing mass, Int. J. Solids Struct., 39, 4627-4664 (2002) · Zbl 1045.74035
[51] Money, N. P., Wishful thinking of turgor revisited: the mechanics of fungal growth, Fungal Genetics and Biol., 21, 173-187 (1997)
[52] Müller, I.; Struchtrup, H., Inflating a rubber balloon, Math. Mech. Solids, 7, 569-577 (2002) · Zbl 1072.74008
[53] Odell, G.; Oster, G.; Alberch, P.; Burnside, B., The mechanical basis of morphogenesis, Dev. Biol., 85, 446-462 (1981)
[54] Ogden, R. W., Large deformation isotropic elasticity—On the correlation of theory and experiment for incompressible rubberlike solids, Proc. Roy. Soc. Lond. A, 326, 565-584 (1972) · Zbl 0257.73034
[55] Ogden, R. W., Non-linear Elastic Deformation (1984), Dover: Dover New york · Zbl 0551.73043
[56] Onuki, A., Theory of pattern formation in gels: surface folding in highly compressible elastic bodies, Phys. Rev. A, 39, 5932-5950 (1989)
[57] Reinhardt, M. O., Das wachsthum der Pilzhyphen, Jahrbücher für wissenschaftliche botanik, 23, 479-566 (1892)
[58] Rodriguez, E. K.; Hoger, A.; McCulloch, A., Stress-dependent finite growth in soft elastic tissue, J. Biomech., 27, 455-467 (1994)
[59] Shipman, P.; Newell, A., Phyllotactic patterns on plants, Phys. Rev. Lett., 92, 168102 (2004)
[60] Skalak, R., Growth as a finite displacement field, (Carlson, D. E.; Shield, R. T., Proceedings of the IUTAM Symposium on Finite Elasticity (1981), Martinus Nijhoff: Martinus Nijhoff The Hague), 347-355 · Zbl 0543.73128
[61] Skalak, R.; Hoger, A., Kinematics of surface growth, J. Math. Biol., 35, 869-907 (1997) · Zbl 0883.92005
[62] Skalak, R.; Tozeren, A.; Zarda, R. P.; Chien, S., Strain energy function of red blood cell membranes, Biophys. J., 13, 245-264 (1973)
[63] Skalak, R.; Zargaryan, S.; Jain, R. K.; Netti, P. A.; Hoger, A., Compatibility and the genesis of residual stress by volumetric growth, J. Math. Biol., 34, 889-914 (1996) · Zbl 0858.92005
[64] Steele, C. R., Shell stability related to pattern formation in plants, J. Appl. Mech., 67, 237-247 (2000) · Zbl 1110.74688
[65] Stein, A. A., The deformation of a rod of growing biological material under longitudinal compression, J. Appl. Math. Mech., 59, 139-146 (1995) · Zbl 0880.73048
[66] Sudipto, K. D.; Aluru, N. R.; Johnson, B.; Crone, W. C.; Beebe, D. J.; Moorwe, J., Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations, J. Microelectromech. Syst., 11, 544-555 (2002)
[67] Taber, L., Biomechanics of growth, remodeling and morphogenesis, Appl. Mech. Rev., 48, 487-545 (1995)
[68] Taber, L., Biomechanical growth laws for muscle tissue, J. Theor. Biol., 193, 201-213 (1998)
[69] Taber, L., A model of aortic growth based on fluid shear and fiber stresses, J. Biomech. Eng., 120, 348-354 (1998)
[70] Taber, L.; Eggers, D. W., Theoretical study of stress-modulated growth in the aorta, J. Theor. Biol., 180, 343-357 (1996)
[71] Taber, L. A.; Humphrey, J. D., Stress-modulated growth, residual stress, and vascular heterogeneity, J. Biomech. Eng., 123, 528-535 (2001)
[72] Thomspon, D. W., On Growth and Form: The Complete Revised Edition (1992), Dover: Dover New York
[73] Totafurno, J.; Bjerknes, M., Morphogenesis and mechanical instability of a prestressed tissue, Biochem. Cell. Biol., 565-574 (1983)
[74] Wang, A. S.D.; Ertepinar, A., Stability and vibrations of elastic thick-walled cylindrical and spherical shells subjected to pressure, Int. J. Non-linear Mech., 7, 539-555 (1972) · Zbl 0243.73036
[75] Wesolowski, Z., Stability of an elastic, thick-walled spherical shell loaded by an external pressure, Arch. Mech. Stosow., 19, 3-23 (1967) · Zbl 0152.43602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.