×

Tools, objects, and chimeras: Connes on the role of hyperreals in mathematics. (English) Zbl 1392.03012

Summary: We examine some of Connes’ criticisms of A. Robinson’s infinitesimals [Non-standard analysis. Amsterdam: North- Holland Publishing Company (1966; Zbl 0151.00803)] starting in 1995. Connes sought to exploit the Solovay model \(\mathcal{S}\) as ammunition against non-standard analysis, but the model tends to boomerang, undercutting Connes’ own earlier work in functional analysis. Connes described the hyperreals as both a “virtual theory” and a “chimera”, yet acknowledged that his argument relies on the transfer principle. We analyze Connes’ “dart-throwing” thought experiment, but reach an opposite conclusion. In \(\mathcal{S}\), all definable sets of reals are Lebesgue measurable, suggesting that Connes views a theory as being “virtual” if it is not definable in a suitable model of ZFC. If so, Connes’ claim that a theory of the hyperreals is “virtual” is refuted by the existence of a definable model of the hyperreal field due to V. Kanovei and S. Shelah [J. Symb. Log. 69, No. 1, 159–164 (2004; Zbl 1070.03044)]. Free ultrafilters aren’t definable, yet Connes exploited such ultrafilters both in his own earlier work on the classification of factors in the 1970s and 80s, and in Noncommutative Geometry, raising the question whether the latter may not be vulnerable to Connes’ criticism of virtuality. We analyze the philosophical underpinnings of Connes’ argument based on Gödel’s incompleteness theorem, and detect an apparent circularity in Connes’ logic. We document the reliance on non-constructive foundational material, and specifically on the Dixmier trace \({-\hskip-9pt\int}\) (featured on the front cover of Connes’ magnum opus) and the Hahn-Banach theorem, in Connes’ own framework. We also note an inaccuracy in M. Machover’s critique of infinitesimal-based pedagogy [“The place of nonstandard analysis in mathematics and in mathematics teaching”, Br. J. Philos. Sci. 44, No. 2, 205–212 (1993; doi:10.1093/bjps/44.2.205)].

MSC:

03A05 Philosophical and critical aspects of logic and foundations
00A30 Philosophy of mathematics
03H05 Nonstandard models in mathematics
26E35 Nonstandard analysis
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Albeverio, S., Høegh-Krohn, R., Fenstad, J., & Lindstrøm, T. (1986) Nonstandard methods in stochastic analysis and mathematical physics. (Pure and Applied Mathematics, Vol. 122). Orlando, FL: Academic Press, Inc. · Zbl 0605.60005
[2] Atiyah, M., The interface between mathematics and physics: A panel discussion sponsored by the DIT & the RIA, Irish Mathematical Society Bulletin, 58, 33-54, (2006) · Zbl 1186.00036
[3] Barner, K. (2011). Fermats “adaequare”—und kein Ende? Mathematische Semesterberichte, 58(1), 13-45. See http://www.springerlink.com/content/5r32u25207611m37/ · Zbl 1216.01002
[4] Bell J. L., Machover M. (1977) A course in mathematical logic. North-Holland Publishing Co., Amsterdam-New York-Oxford · Zbl 0359.02001
[5] Bell J., Slomson A. (1969) Models and ultraproducts: An introduction. North-Holland Publishing Co., Amsterdam-London · Zbl 0179.31402
[6] Benci, V., Horsten, L., & Wenmackers, S. (2011) Non-archimedean probability. Milan Journal of Mathematics, to appear. See http://arxiv.org/abs/1106.1524. · Zbl 1411.60007
[7] Bishop, E., Review: H. jerome keisler, elementary calculus, Bulletin of the American Mathematical Society, 83, 205-208, (1977) · doi:10.1090/S0002-9904-1977-14264-X
[8] Blass, A.; Laflamme, C., Consistency results about filters and the number of inequivalent growth types, Journal of Symbolic Logic, 54, 50-56, (1989) · Zbl 0673.03038 · doi:10.2307/2275014
[9] Błaszczyk, P., Katz, M., & Sherry, D. (2012). Ten misconceptions from the history of analysis and their debunking. Foundations of Science (online first). See doi:10.1007/s10699-012-9285-8 and http://arxiv.org/abs/1202.4153. · Zbl 1291.01018
[10] Borovik, A., Jin, R., & Katz, M. (2012). An integer construction of infinitesimals: Toward a theory of Eudoxus hyperreals. Notre Dame Journal of Formal Logic, 53(4), 557-570. http://arxiv.org/abs/1210.7475. · Zbl 1266.03074
[11] Borovik A., & Katz M. (2012). Who gave you the Cauchy-Weierstrass tale? The dual history of rigorous calculus. Foundations of Science, 17(3), 245-276. See doi:10.1007/s10699-011-9235-x and http://arxiv.org/abs/1108.2885. · Zbl 1279.01017
[12] Bråting, K., A new look at E. G. björling and the Cauchy sum theorem, Archive for History of Exact Sciences, 61, 519-535, (2007) · Zbl 1151.01008 · doi:10.1007/s00407-007-0005-7
[13] Breger, H., The mysteries of adaequare: A vindication of Fermat, Archive for History of Exact Sciences, 46, 193-219, (1994) · Zbl 0792.01007 · doi:10.1007/BF01686277
[14] Breuillard, E., Green, B., & Tao, T. (2011) The structure of approximate groups, Publications Mathématiques. Institut de Hautes études Scientifiques, to appear. See http://arxiv.org/abs/1110.5008
[15] Brukner, Č., & Zeilinger A. (2005). Quantum physics as a science of information, in Quo vadis quantum mechanics?. In Frontiers Collection (pp. 47-61). Berlin: Springer. · Zbl 1104.81301
[16] Cantor, G. (1932). Foundations of a general theory of manifolds. (Grundlagen einer allgemeinen Mannigfaltigkeitslehre.) Leipzig. Teubner, 1883, 47 S. Reproduced in Georg Cantor, Gesammelte Abhandlungen, (pp. 165-209) Berlin: Springer.
[17] Carey, A.; Phillips, J.; Sukochev, F., Spectral flow and Dixmier traces, Advances in Mathematics, 173, 68-113, (2003) · Zbl 1015.19003 · doi:10.1016/S0001-8708(02)00015-4
[18] Cassirer E. (1957) The philosophy of symbolic forms. Yale University Press, New Haven and London
[19] Chang C. C., Keisler H. J. (1992) Model Theory (3rd ed.). North Holland, Amsterdam
[20] Choquet, G., Deux classes remarquables d’ultrafiltres sur \({\mathbb{N}}\), Bulletin des Sciences Mathématiques (2), 92, 143-153, (1968) · Zbl 0162.26201
[21] Christensen, J. (1974). Topology and Borel structure. Descriptive topology and set theory with applications to functional analysis and measure theory. (North-Holland Mathematics Studies, Vol. 10). (Notas de Matemática, No. 51). North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York. · Zbl 0273.28001
[22] Cifoletti, G. (1990). La méthode de Fermat: son statut et sa diffusion. Algèbre et comparaison de figures dans l’histoire de la méthode de Fermat. In: Cahiers d’Histoire et de Philosophie des Sciences. Nouvelle Série33. Paris:Société Française d’Histoire des Sciences et des Techniques. · Zbl 0819.01013
[23] Connes, A. (1969/70) Ultrapuissances et applications dans le cadre de l’analyse non standard. 1970 Séminaire Choquet: 1969/70, Initiation à à l’Analyse Fasc. 1, Exp. 8, 25 pp. Paris: Secrétariat mathématique. · Zbl 0216.01206
[24] Connes, A., Détermination de modèles minimaux en analyse non standard et application, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Séries A et B, 271, a969-a971, (1970) · Zbl 0255.02059
[25] Connes, A., Classification of injective factors cases. II_{1}, II_{∞}, III_{λ}, λ ≠ 1, Annals of Mathematics (2), 104, 73-115, (1976) · Zbl 0343.46042 · doi:10.2307/1971057
[26] Connes, A. (1990). Essay on physics and noncommutative geometry. The interface of mathematics and particle physics (Oxford, 1988). In: The Institute of Mathematics and its Applications Conference Series. New Series24 (pp. 9-48). New York: Oxford University Press.
[27] Connes A. (1994) Noncommutative geometry. Academic Press, Inc, San Diego, CA · Zbl 1106.58004
[28] Connes, A., Noncommutative geometry and reality, Journal of Mathematical Physics, 36, 6194-6231, (1995) · Zbl 0871.58008 · doi:10.1063/1.531241
[29] Connes, A., Brisure de symétrie spontanée et géométrie du point de vue spectral. [spontaneous symmetry breaking and geometry from the spectral point of view], Journal of Geometry and Physics, 23, 206-234, (1997) · Zbl 0918.46064 · doi:10.1016/S0393-0440(97)80001-0
[30] Connes, A. (2000a). Noncommutative geometry-year 2000. GAFA 2000 (Tel Aviv, 1999). Geometric and Functional Analysis 2000, Special Volume, Part II, pp. 481-559. · Zbl 0985.58003
[31] Connes, A. (2000b). Noncommutative geometry year 2000. Preprint (2000), see http://arxiv.org/abs/math/0011193. · Zbl 0985.58003
[32] Connes, A., A short survey of noncommutative geometry, Journal of Mathematical Physics, 41, 3832-3866, (2000) · Zbl 0974.58008 · doi:10.1063/1.533329
[33] Connes A. (2000d) Interview: la réalité mathématique archaï que. La Recherche, 2000. See http://www.larecherche.fr/content/recherche/article?id=14272.
[34] Connes, A. (2004). Cyclic cohomology, noncommutative geometry and quantum group symmetries. In item (Connes et al. 2004), (pp. 1-71). · Zbl 1052.46057
[35] Connes, A. (2007). An interview with Alain Connes. Part I: conducted by Catherine Goldstein and Georges Skandalis (Paris). European Mathematical Society. Newsletter 63, 25-30. See http://www.ems-ph.org/journals/newsletter/pdf/2007-03-63.pdf.
[36] Connes, A. (2007). Non-standard stuff. Blog. See http://noncommutativegeometry.blogspot.com/2007/07/non-standard-stuff.html.
[37] Connes, A. (2009). Private communication. January 12, 2009
[38] Connes, A. (2012a). Private communication. June 17, 2012
[39] Connes A. (2012b) Private communication. July 2, 2012
[40] Connes, A., Cuntz, J., Guentner, E., Higson, N., Kaminker, J., & Roberts, J. (2004). Noncommutative geometry. Lectures given at the C.I.M.E. Summer School held in Martina Franca, September 3-9, 2000. In S. Doplicher & R. Longo (Eds.), Lecture Notes in Mathematics, 1831. Springer-Verlag, Berlin: Centro Internazionale Matematico Estivo (C.I.M.E.), Florence.
[41] Connes, A., Lichnerowicz, A., & Schützenberger M. (2001) Triangle of thoughts. (Translated from the 2000 French original by Jennifer Gage). Providence, RI: American Mathematical Society. · Zbl 1015.00005
[42] Corfield D. (2003) Towards a philosophy of real mathematics. Cambridge University Press, Cambridge · Zbl 1089.00003 · doi:10.1017/CBO9780511487576
[43] Cutland, N.; Kessler, C.; Kopp, E.; Ross, D., On cauchy’s notion of infinitesimal, The British Journal for the Philosophy of Science, 39, 375-378, (1988) · Zbl 0661.26010 · doi:10.1093/bjps/39.3.375
[44] Davies, E. B., Towards a philosophy of real mathematics (book review of item corfield 2003), Notices of the American Mathematical Society, 58, 1454-1457, (2011)
[45] Davis, M. (1977). Applied nonstandard analysis. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. Reprinted: Dover, NY, 2005, see http://store.doverpublications.com/0486442292.html. · Zbl 0359.02060
[46] Davis, M., The incompleteness theorem, Notices of the American Mathematical Society, 53, 414-418, (2006) · Zbl 1100.03003
[47] Davis, M. (2012a), Pragmatic Platonism. Preprint. · Zbl 1151.01008
[48] Davis, M. (2012b). Private communication. July 1, 2012. · Zbl 0705.03033
[49] Dennett, D., Real patterns, Journal of Philosophy, 88, 27-51, (1991) · doi:10.2307/2027085
[50] Dieks, D. (2002). MathSciNet review of item (Connes et al. 2001). See http://www.ams.org/mathscinet-getitem?mr=1861272
[51] Dixmier, J., Existence de traces non normales, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Séries A et B, 262, a1107-a1108, (1966) · Zbl 0141.12902
[52] Durham, I. (2011) In search of continuity: thoughts of an epistemic empiricist. See http://arxiv.org/abs/1106.1124
[53] Earman, J., Infinities, infinitesimals, and indivisibles: the Leibnizian labyrinth, Studia Leibnitiana, 7, 236-251, (1975) · Zbl 0431.03041
[54] Ehrlich, P., The rise of non-Archimedean mathematics and the roots of a misconception. I. the emergence of non-Archimedean systems of magnitudes, Archive for History of Exact Sciences, 60, 1-121, (2006) · Zbl 1086.01024 · doi:10.1007/s00407-005-0102-4
[55] Ehrlich, P., The absolute arithmetic continuum and the unification of all numbers great and small, Bulletin of Symbolic Logic, 18, 1-45, (2012) · Zbl 1242.03065 · doi:10.2178/bsl/1327328438
[56] Engliš, M.; Zhang, G., Hankel operators and the Dixmier trace on strictly pseudoconvex domains, Documenta Mathematica, 15, 601-622, (2010) · Zbl 1218.32002
[57] Erdös, P.; Gillman, L.; Henriksen, M., An isomorphism theorem for real-closed fields, The Annals of Mathematics (2), 61, 542-554, (1955) · Zbl 0065.02305 · doi:10.2307/1969812
[58] Fahey, C.; Lenard, C.; Mills, T.; Milne, L., Calculus: A marxist approach, The Australian Mathematical Society Gazette, 36, 258-265, (2009) · Zbl 1184.01020
[59] Farah, I.; Shelah, S., A dichotomy for the number of ultrapowers, Journal of Mathematical Logic, 10, 45-81, (2010) · Zbl 1254.03068 · doi:10.1142/S0219061310000936
[60] Foreman, M.; Wehrung, F., The Hahn-Banach theorem implies the existence of a non-Lebesgue measurable set, Fundamenta Mathematicae, 138, 13-19, (1991) · Zbl 0792.28005
[61] Fraenkel, A. (1946). Einleitung in die Mengenlehre. Dover Publications, New York, NY, [originally published by Springer, Berlin, 1928]. · JFM 54.0086.01
[62] Fraenkel A. (1967) Lebenskreise. Aus den Erinnerungen eines jüdischen Mathematikers. Deutsche Verlags-Anstalt, Stuttgart
[63] Gayral, V., Iochum, B., & Sukochev, F. (2012). (Org.): Traces Singulières et leurs Applications du 02/01/2012 au 06/01/2012. CIRM, Marseille. See http://www.cirm.univ-mrs.fr/index.html/spip.php?rubrique2&EX=info_rencontre&annee=2012&id_renc=704&lang=en.
[64] Gierz G., Hofmann K., Keimel K., Lawson J., Mislove M., Scott D. (2003) Continuous lattices and domains. Encyclopedia of Mathematics and its applications. Cambridge University Press, Cambridge · Zbl 1088.06001 · doi:10.1017/CBO9780511542725
[65] Gödel, K. (1940). The consistency of the axiom of choice and of the continuum hypothesis with the axioms of set theory. In: Annals of Mathematics Studies (Vol. 3, pp. 66) Princeton: Princeton University Press. · Zbl 0061.00902
[66] Goldblatt, R. (1998). Lectures on the hyperreals. An introduction to nonstandard analysis. Graduate Texts in Mathematics (Vol. 188) New York: Springer-Verlag · Zbl 0911.03032
[67] Goldbring, I., Hilbert’s fifth problem for local groups, Annals of Mathematics (2), 172, 1269-1314, (2010) · Zbl 1219.22004 · doi:10.4007/annals.2010.172.1273
[68] Goldenbaum, U., Jesseph, D. (Eds.) (2008) Infinitesimal differences: Controversies between Leibniz and his contemporaries. Walter de Gruyter, Berlin-New York
[69] Goodstein, R., On the restricted ordinal theorem, Journal of Symbolic Logic, 9, 33-41, (1944) · Zbl 0060.02306 · doi:10.2307/2268019
[70] Grabiner J. (1981) The origins of Cauchy’s rigorous calculus. MIT Press, Cambridge, Mass-London · Zbl 0517.01002
[71] Hacking, I. (2013). The mathematical animal: philosophical thoughts about proofs, applications, and other mathematical activities. Cambridge University Press, (forthcoming).
[72] Halmos P. (1985) I want to be a mathematician. An automathography. Springer-Verlag, New York · Zbl 0569.01020 · doi:10.1007/978-1-4612-1084-9
[73] Hamkins, J. (2012a). Is the dream solution of the continuum hypothesis attainable? See http://arxiv.org/abs/1203.4026.
[74] Hamkins, J. (2012b). The set-theoretic multiverse. The Review of Symbolic Logic, 5: 416-449. See doi:10.1017/S1755020311000359. · Zbl 1260.03103
[75] Hersh, R. (1997). What is mathematics, really? New York: Oxford University Press. · Zbl 0913.00010
[76] Herzberg, F., Internal laws of probability, generalized likelihoods and lewis’ infinitesimal chances-a response to adam elga, The British Journal for the Philosophy of Science, 58, 25-43, (2007) · Zbl 1155.00304 · doi:10.1093/bjps/axl028
[77] Hirschfeld, J., The nonstandard treatment of hilbert’s fifth problem, Transactions of the American Mathematical Society, 321, 379-400, (1990) · Zbl 0705.03033
[78] Hörmander L. (1976) Linear partial differential operators. Springer Verlag, Berlin-New York · Zbl 0321.35001
[79] Hrbáček, K., Axiomatic foundations for nonstandard analysis, Fundamenta Mathematicae, 98, 1-19, (1978) · Zbl 0373.02039
[80] Hrushovski, E., The Mordell-lang conjecture for function fields, Journal of the American Mathematical Society, 9, 667-690, (1996) · Zbl 0864.03026 · doi:10.1090/S0894-0347-96-00202-0
[81] Hrushovski, E., Stable group theory and approximate subgroups, Journal of the American Mathematical Society, 25, 189-243, (2012) · Zbl 1259.03049 · doi:10.1090/S0894-0347-2011-00708-X
[82] Isaacson, D.; Novák, Z. (ed.); Simonyi, A. (ed.), The reality of mathematics and the case of set theory, 1-76, (2011), Budapest
[83] Ishiguro H. (1990) Leibniz’s philosophy of logic and language (2nd ed.). Cambridge University Press, Cambridge
[84] Jesseph, D. (2012). Leibniz on the Elimination of infinitesimals: Strategies for finding truth in fiction. In N. B. Goethe, P. Beeley & D. Rabouin (Eds.), To appear in Leibniz on the interrelations between mathematics and philosophy, (Archimedes Series, 27 pages). Springer Verlag · Zbl 0871.58008
[85] Kalton, N.; Sedaev, A.; Sukochev, F., Fully symmetric functionals on a Marcinkiewicz space are Dixmier traces, Advances in Mathematics, 226, 3540-3549, (2011) · Zbl 1216.47030 · doi:10.1016/j.aim.2010.09.025
[86] Kanovei, V., The set of all analytically definable sets of natural numbers can be defined analytically, Mathematics of the USSR, Izvestija, 15, 469-500, (1980) · Zbl 0452.03041 · doi:10.1070/IM1980v015n03ABEH001258
[87] Kanovei, V., Undecidable hypotheses in edward nelson’s internal set theory, Russian Mathematical Surveys, 46, 1-54, (1991) · Zbl 0782.03028 · doi:10.1070/RM1991v046n06ABEH002870
[88] Kanovei, V., & Reeken, M. (2004). Nonstandard analysis, axiomatically. Springer Monographs in Mathematics. Berlin: Springer, xvi+408 pp. · Zbl 1058.03002
[89] Kanovei, V.; Shelah, S., A definable nonstandard model of the reals, Journal of Symbolic Logic, 69, 159-164, (2004) · Zbl 1070.03044 · doi:10.2178/jsl/1080938834
[90] Kanovei, V.; Uspensky, V., Uniqueness of nonstandard extensions, Moscow University Mathematics Bulletin, 61, 1-8, (2006) · Zbl 1150.03311
[91] Kantor, I., Certain generalizations of Jordan algebras, Trudy Seminara po Vektornomu i Tenzornomu Analizu s ikh Prilozheniyami k Geometrii, Mekhanike i Fizike, 16, 407-499, (1972) · Zbl 0272.17001
[92] Katz, K., & Katz, M. (2011a). Cauchy’s continuum. Perspectives on Science, 19(4), 426-452. See http://arxiv.org/abs/1108.4201 and http://www.mitpressjournals.org/doi/abs/10.1162/POSC_a_00047. · Zbl 1292.01028
[93] Katz, K., & Katz, M. (2011b). Meaning in classical mathematics: is it at odds with Intuitionism? Intellectica, 56(2), 223-302. See http://arxiv.org/abs/1110.5456. · Zbl 0207.00905
[94] Katz, K., & Katz, M. (2012a). Stevin numbers and reality. Foundations of Science, 17(2), 109-123. See http://arxiv.org/abs/1107.3688 and doi:10.1007/s10699-011-9228-9. · Zbl 1275.01016
[95] Katz, K., & Katz, M. (2012b). A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Foundations of Science, 17(1), 51-89. See doi:10.1007/s10699-011-9223-1 and http://arxiv.org/abs/1104.0375. · Zbl 1283.03006
[96] Katz, M. (1995). A proof via the Seiberg-Witten moduli space of Donaldson’s theorem on smooth 4 -manifolds with definite intersection forms. R.C.P. 25, Vol. 47 (Strasbourg, 1993-1995), 269-274, Prépubl. Inst. Rech. Math. Av., 1995/24, Univ. Louis Pasteur, Strasbourg, See http://arxiv.org/abs/1207.6271. · Zbl 0661.26010
[97] Katz, M., Leichtnam, E. (2013). Commuting and non-commuting infinitesimals. American Mathematical Monthly (to appear). · Zbl 1280.26047
[98] Katz, M., Schaps, D., & Shnider, S. (2013). Almost equal: The method of adequality from diophantus to fermat and beyond. Perspectives on Science 21(3), (to appear). http://arxiv.org/abs/1210.7750. · Zbl 1292.01017
[99] Katz, M., & Sherry, D. (2012a) Leibniz’s infinitesimals: Their fictionality, their modern implementations, and their foes from Berkeley to Russell and beyond. Erkenntnis (online first), see doi:10.1007/s10670-012-9370-y and http://arxiv.org/abs/1205.0174. · Zbl 1303.01012
[100] Katz, M., & Sherry, D. (2012b). Leibniz’s laws of continuity and homogeneity. Notices of the American Mathematical Society, 59(11), (to appear) · Zbl 1284.03064
[101] Kawai, T. (1983) Nonstandard analysis by axiomatic methods. In: Southeast Asia Conference on Logic, Singapore 1981, Studies in Logic and Foundations of Mathematics (Vol. 111, pp. 55-76). North Holland. · Zbl 0542.03046
[102] Keisler H.J. (1986) Elementary calculus: An infinitesimal approach. (2nd ed.). Boston: Prindle, Weber & Schimidt See http://www.math.wisc.edu/ keisler/calc.html · Zbl 0655.26002
[103] Keisler, H. J.; Ehrlich, P. (ed.), The hyperreal line, 207-237, (1994), Dordrecht · Zbl 0964.03535 · doi:10.1007/978-94-015-8248-3_8
[104] Klein, F. (1908) Elementary Mathematics from an Advanced Standpoint. Vol. I. Arithmetic, Algebra, Analysis. Translation by E. R. Hedrick and C. A. Noble [Macmillan, New York, 1932] from the third German edition [Springer, Berlin, 1924]. Originally published as Elementarmathematik vom höheren Standpunkte aus (Leipzig, 1908).
[105] Kunen, K. (1980). Set theory. An introduction to independence proofs. Studies in Logic and the Foundations of Mathematics (Vol. 102). Amsterdam-New York: North-Holland Publishing Co. · Zbl 0443.03021
[106] Lakoff G., Núñez R. (2000) Where mathematics comes from. How the embodied mind brings mathematics into being. Basic Books, New York · Zbl 0987.00003
[107] Larson, P., The filter dichotomy and medial limits, Journal of Mathematical Logic, 9, 159-165, (2009) · Zbl 1207.03055 · doi:10.1142/S0219061309000872
[108] Levey, S. (2008). Archimedes, Infinitesimals and the Law of Continuity: On Leibniz’s Fictionalism. In: Goldenbaum et al. [68], pp. 107-134.
[109] Lord, S., & Sukochev, F. (2010) Measure theory in noncommutative spaces. SIGMA Symmetry Integrability Geom. Methods Appl. 6(Paper 072):36 · Zbl 1227.46042
[110] Lord, S.; Sukochev, F., Noncommutative residues and a characterisation of the noncommutative integral, Proceedings of the American Mathematical Society, 139, 243-257, (2011) · Zbl 1218.58019 · doi:10.1090/S0002-9939-2010-10472-0
[111] Lord, S.; Potapov, D.; Sukochev, F., Measures from Dixmier traces and zeta functions, Journal of Functional Analysis, 259, 1915-1949, (2010) · Zbl 1242.46072 · doi:10.1016/j.jfa.2010.06.012
[112] Łoś, J. (1955). Quelques remarques, thérèmes et problèmes sur les classes définissables d’algèbres. In Mathematical interpretation of formal systems (pp. 98-113). Amsterdam: North-Holland Publishing Co. · Zbl 0068.24401
[113] Luxemburg, W. (1964). Nonstandard analysis. Lectures on A. Robinson’s Theory of infinitesimals and infinitely large numbers, Second corrected ed. Pasadena: Mathematics Department, California Institute of Technology.
[114] Luxemburg, W. (1963). Addendum to “On the measurability of a function which occurs in a paper by A. C. Zaanen”. Nederl. Akad. Wetensch. Proceedings of Series A 66 Koninklijke Nederlandse Akademie van Wetenschappen. Indagationes Mathematicae, 25, 587-590. · Zbl 0208.38003
[115] Luxemburg, W. (1973). What is nonstandard analysis? Papers in the foundations of mathematics. American Mathematical Monthly 80(6), part II, 38-67. · Zbl 0268.26019
[116] Machover, M., The place of nonstandard analysis in mathematics and in mathematics teaching, The British Journal for the Philosophy of Science, 44, 205-212, (1993) · doi:10.1093/bjps/44.2.205
[117] Mac Lane S. (1986) Mathematics, form and function. Springer-Verlag, New York · Zbl 0675.00001 · doi:10.1007/978-1-4612-4872-9
[118] Margenau, H. (1935). Methodology of Physics, 2 parts. Philosophy of Physics, 2, 48-72, 164-187.
[119] Margenau H. (1950) The nature of physical reality. A philosophy of modern physics. McGraw-Hill Book Co., Inc, New York, NY · Zbl 0039.24309
[120] Marquis, J.-P., Abstract mathematical tools and machines for mathematics, Philosophia Mathematica. Series III, 5, 250-272, (1997) · Zbl 1121.00303 · doi:10.1093/philmat/5.3.250
[121] Marquis, J.-P. (2006). A path to the epistemology of mathematics: homotopy theory. In The architecture of modern mathematics (pp. 239-260). Oxford: Oxford University Press · Zbl 1126.01016
[122] Meyer, P. (1973). Limites médiales, d’après mokobodzki, séminaire de probabilités, VII (Univ. Strasbourg, année universitaire 1971-1972) Lecture Notes in Mathematics (Vol. 321, pp. 198-204) Berlin: Springer. · Zbl 0262.28005
[123] Mokobodzki, G. (1967/68). Ultrafiltres rapides sur N. Construction d’une densité relative de deux potentiels comparables. 1969 Séminaire de Théorie du Potentiel, dirigé par M. Brelot, G. Choquet et J. Deny: 1967/68, Exp. 12, 22 pp. Secrétariat mathématique, Paris. · Zbl 1216.47030
[124] Morley, M.; Vaught, R., Homogeneous universal models, Mathematica Scandinavica, 11, 37-57, (1962) · Zbl 0112.00603
[125] Nelson, E., Internal set theory: A new approach to nonstandard analysis, Bulletin of the American Mathematical Society, 83, 1165-1198, (1977) · Zbl 0373.02040 · doi:10.1090/S0002-9904-1977-14398-X
[126] Otte, M. (1994). Das Formale, das Soziale, und das Subjektive. Eine Einführung in die Philosophie und Didaktik der Mathematik. Frankfurt/Main: Suhrkamp Verlag.
[127] Novikov, P. S., On the consistency of some propositions of the descriptive theory of sets, American Mathematical Society Translations (2), 29, 51-89, (1963) · Zbl 0192.04902
[128] Pawlikowski, J., The Hahn-Banach theorem implies the Banach-Tarski paradox, Fundamenta Mathematicae, 138, 21-22, (1991) · Zbl 0792.28006
[129] Proietti, C., Natural numbers and infinitesimals: A discussion between benno kerry and georg Cantor, History and Philosophy of Logic, 29, 343-359, (2008) · Zbl 1162.03003 · doi:10.1080/01445340802025768
[130] Raussen, M.; Skau, C., Interview with mikhail Gromov, Notices of the American Mathematical Society, 57, 391-403, (2010) · Zbl 1191.01052
[131] Resnik M. (1994) Mathematics as a Science of Patterns. Oxford University Press, Oxford
[132] Robinson A. (1966) Non-standard analysis. North-Holland Publishing Co, Amsterdam · Zbl 0151.00803
[133] Rudin, W. (1956). Homogeneity problems in the theory of Čech compactifications. Duke Mathematical Journal, 23, 409-419 and 633. · Zbl 0073.39602
[134] Russell B. (1903) The principles of mathematics. Cambridge University Press, Cambridge · JFM 34.0062.14
[135] Scott, D. (1961). On constructing models for arithmetic. 1961 Infinitistic Methods (Proceedings of symposium Foundations of Mathematics, Warsaw, 1959) (pp. 235-255). Pergamon, Oxford; Państwowe Wydawnictwo Naukowe, Warsaw. · Zbl 0126.01201
[136] Shapiro S. (1997) Philosophy of mathematics. Structure and ontology. Oxford University Press, New York · Zbl 0897.00004
[137] Shelah, S. (1982). Proper forcing. Lecture Notes in Mathematics (Vol. 940). Berlin-New York: Springer-Verlag. · Zbl 0495.03035
[138] Shelah, S., Can you take solovay’s inaccessible away?, Israel Journal of Mathematics, 48, 1-47, (1984) · Zbl 0596.03055 · doi:10.1007/BF02760522
[139] Sierpiński, W. (1934). Hypothèse du Continu, Monografje Matematyczne, Tome 4, Warszawa-Lwow, Subwencji Funduszu Kultur. Narodowej, v+192 pp. [2nd edition: Chesea, 1956. · Zbl 0974.58008
[140] Sinaceur, H., Cauchy et Bolzano, Revue d’Histoire des Sciences et de leurs Applications, 26, 97-112, (1973) · Zbl 0266.01017 · doi:10.3406/rhs.1973.3315
[141] Skolem, T., Über die unmöglichkeit einer vollständigen charakterisierung der zahlenreihe mittels eines endlichen axiomensystems, Norsk Matematisk Forenings Skrifter II. Series, 1/12, 73-82, (1933) · Zbl 0007.19305
[142] Skolem, T., Über die nicht-charakterisierbarkeit der zahlenreihe mittels endlich oder abzählbar unendlich vieler aussagen mit ausschliesslich zahlenvariablen, Fundamenta Mathematicae, 23, 150-161, (1934) · Zbl 0010.04902
[143] Skolem, T. (1955). Peano’s axioms and models of arithmetic. In Mathematical interpretation of formal systems (pp. 1-14). Amsterdam: North-Holland Publishing Co. · Zbl 0068.24603
[144] Solovay, R., A model of set-theory in which every set of reals is Lebesgue measurable, Annals of Mathematics (2), 92, 1-56, (1970) · Zbl 0207.00905 · doi:10.2307/1970696
[145] Stern, J., Le problème de la mesure. seminar bourbaki, Astérisque 1983, 1983, 325-346, (1985)
[146] Stillwell, J., Concise survey of mathematical logic, Australian Mathematical Society. Journal. Series A. Pure Mathematics and Statistics, 24, 139-161, (1977) · Zbl 0393.03002 · doi:10.1017/S1446788700020164
[147] Stroyan, K., & Luxemburg, W. (1976). Introduction to the theory of infinitesimals. Pure and Applied Mathematics, No. 72. New York-London: Academic Press [Harcourt Brace Jovanovich, Publishers] · Zbl 0336.26002
[148] Sukochev, F.; Zanin, D., Ζ-function and heat kernel formulae, Journal of Functional Analysis, 260, 2451-2482, (2011) · Zbl 1235.46061 · doi:10.1016/j.jfa.2010.10.007
[149] Sukochev, F. & Zanin, D. (2011b). Traces on symmetrically normed operator ideals. See http://arxiv.org/abs/1108.2598. · Zbl 1275.47131
[150] Tao T. (2008) Structure and randomness. Pages from year one of a mathematical blog. American Mathematical Society, Providence, RI · Zbl 1245.00024
[151] van den Berg, I., Neves, V. (Eds.) (2007) The strength of nonstandard analysis. Springer, Wien, NewYork, Vienna · Zbl 1117.03074
[152] Wenmackers, S., & Horsten, L. (2012). Fair infinite lotteries. Synthese See doi:10.1007/s11229-010-9836-x. · Zbl 1284.03165
[153] Wheeler J. (1994) At home in the universe. Masters of modern physics. American Institute of Physics, Woodbury, NY
[154] Wilson, M., Frege: the royal road from geometry, Nous, 26, 149-180, (1992) · Zbl 1366.00052 · doi:10.2307/2215733
[155] Zelmanov, E., On isaiah Kantor (1936-2006), Journal of Generalized Lie Theory and Applications, 2, 111, (2008) · Zbl 1152.01342 · doi:10.4303/jglta/S070302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.