×

Existence of stationary fronts in a system of two coupled wave equations with spatial inhomogeneity. (English) Zbl 1433.37069

Authors’ abstract: We investigate the existence of stationary fronts in a coupled system of two sine-Gordon equations with a smooth, ‘hat-like’ spatial inhomogeneity. The spatial inhomogeneity corresponds to a spatially dependent scaling of the sine-Gordon potential term. The uncoupled inhomogeneous sine-Gordon equation has stable stationary front solutions that persist in the coupled system. Carrying out a numerical investigation it is found that these inhomogeneous sine-Gordon fronts loose stability, provided the coupling between the two inhomogeneous sine-Gordon equations is strong enough, with new stable fronts bifurcating. In order to analytically study the bifurcating fronts, we first approximate the smooth spatial inhomogeneity by a piecewise constant function. With this approximation, we prove analytically the existence of a pitchfork bifurcation. To complete the argument, we prove that transverse fronts for a piecewise constant inhomogeneity persist for the smooth ‘hat-like’ spatial inhomogeneity by introducing a fast-slow structure and using geometric singular perturbation theory.

MSC:

37K50 Bifurcation problems for infinite-dimensional Hamiltonian and Lagrangian systems
35B25 Singular perturbations in context of PDEs
35B32 Bifurcations in context of PDEs
35L71 Second-order semilinear hyperbolic equations

Software:

AUTO-07P
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bour E 1862 Théorie de la déformation des surfaces J. Ecole Imperiale Polytech.19 1-48
[2] Braun O M, Kivshar Y S and Kosevich A M 1988 Interaction between kinks in coupled chains of adatoms J. Phys. C: Solid State Phys.21 3881 · doi:10.1088/0022-3719/21/21/011
[3] Derks G, Doelman A, van Gils S A and Susanto H 2007 Stability analysis of π-kinks in a 0-π Josephson junction SIAM J. Appl. Dyn. Syst.6 99-141 · Zbl 1210.39014 · doi:10.1137/060657984
[4] Derks G, Doelman A, Knight C J K and Susanto H 2012 Pinned fluxons in a Josephson junction with a finite-length inhomogeneity Eur. J. Appl. Math.23 201-44 · Zbl 1245.82086 · doi:10.1017/S0956792511000301
[5] Derks G and Gaeta G 2011 A minimal model of DNA dynamics in interaction with RNA-polymerase Physica D 240 1805-17 · Zbl 1227.92021 · doi:10.1016/j.physd.2011.08.005
[6] Doedel E J, Paffenroth R C, Champneys A R, Fairgrieve T F, Kuznetsov Yu A, Oldeman B E and Sandstede B 2007 Auto07p: Continuation and bifurcation software for ordinary differential equations Technical Report Concordia University
[7] Doelman A, van Heijster P and Kaper T J 2009 Pulse dynamics in a three-component system: existence analysis J. Dyn. Differ. Equ.21 73-115 · Zbl 1173.35068 · doi:10.1007/s10884-008-9125-2
[8] Fenichel N 1979 Geometric singular perturbation theory for ordindary differential equations J. Differ. Equ.31 53-98 · Zbl 0476.34034 · doi:10.1016/0022-0396(79)90152-9
[9] Frenkel J and Kontorova T 1939 On the theory of plastic deformation and twinning Izv. Akad. Nauk SSSR Ser. Fiz.1 137-49 · JFM 65.1469.02
[10] Goatham S W, Mannering L E, Hann R and Krusch S 2011 Dynamics of multi-kinks in the presence of wells and barriers Acta Phys. Pol. B 42 2087-106 · doi:10.5506/APhysPolB.42.2087
[11] Goh R and Scheel A 2016 Pattern formation in the wake of triggered pushed fronts Nonlinearity29 2196-237 · Zbl 1353.35055 · doi:10.1088/0951-7715/29/8/2196
[12] Golubitsky M and Schaeffer D G 1985 Singularities and Groups in Bifurcation Theory vol 1 (Berlin: Springer) · Zbl 0607.35004 · doi:10.1007/978-1-4612-5034-0
[13] Hamdi S, Morse B, Halphen B and Schiesser W 2011 Analytical solutions of long nonlinear internal waves: part I Nat. Hazards57 597-607 · doi:10.1007/s11069-011-9757-0
[14] Homma S and Takeno S 1984 A coupled base-rotator model for structure and dynamics of dna Prog. Theor. Phys.72 679-93 · Zbl 1074.92501 · doi:10.1143/PTP.72.679
[15] Jones C K R T 1995 Chapter: Geometric singular perturbation theory Dynamical Systems(Lecture Notes in Mathematics vol 1609) (Berlin: Springer) pp 44-118 · Zbl 0840.58040 · doi:10.1007/BFb0095239
[16] Mann E 1997 Systematic perturbation theory for sine-Gordon solitons without use of inverse scattering methods J. Phys. A: Math. Gen.30 1227-41 · Zbl 1001.81514 · doi:10.1088/0305-4470/30/4/023
[17] Mielke A 1995 A new approach to sideband-instabilities using the principle of reduced instability Nonlinear Dynamics and Pattern Formation in the Natural Environment (Noordwijkerhout, 1994)(Pitman Research Notes in Mathematics Series vol 335) (Harlow: Longman) pp 206-22 · Zbl 0838.35011
[18] Mielke A 1997 Instability and stability of rolls in the Swift-Hohenberg equation Commun. Math. Phys.189 829-53 · Zbl 0897.76037 · doi:10.1007/s002200050230
[19] Piette B and Zakrzewski W J 2007 Scattering of sine-Gordon kinks on potential wells J. Phys. A: Math. Theor.40 5995-6010 · Zbl 1119.35078 · doi:10.1088/1751-8113/40/22/016
[20] Yakushevich L V 1989 Nonlinear DNA dynamics: a new model Phys. Lett. A 136 413-7 · doi:10.1016/0375-9601(89)90425-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.