Prins, Abraham Love The projective character tables of the maximal subgroups of the Mathieu groups \(M_{23}\) and \(M_{24}\). (English) Zbl 07546749 Palest. J. Math. 11, No. 1, 305-315 (2022). MSC: 20C15 20C40 PDF BibTeX XML Cite \textit{A. L. Prins}, Palest. J. Math. 11, No. 1, 305--315 (2022; Zbl 07546749) Full Text: Link OpenURL
Casas, Josè Manuel; Hosseini, Seyedeh Narges On isoclinism of Hom-Lie algebras. (English) Zbl 07541270 J. Algebra 606, 894-915 (2022). MSC: 17A30 17B61 18G90 PDF BibTeX XML Cite \textit{J. M. Casas} and \textit{S. N. Hosseini}, J. Algebra 606, 894--915 (2022; Zbl 07541270) Full Text: DOI OpenURL
Koshitani, Shigeo; Lassueur, Caroline Trivial source endo-trivial modules for finite groups with semi-dihedral Sylow 2-subgroups. (English) Zbl 07534239 Beitr. Algebra Geom. 63, No. 2, 233-246 (2022). MSC: 20C20 20C25 20C33 20C34 20J05 PDF BibTeX XML Cite \textit{S. Koshitani} and \textit{C. Lassueur}, Beitr. Algebra Geom. 63, No. 2, 233--246 (2022; Zbl 07534239) Full Text: DOI OpenURL
Safa, Hesam The Schur multiplier of an \(n\)-Lie superalgebra. (English) Zbl 07534133 Commun. Algebra 50, No. 7, 2983-2996 (2022). MSC: 17B30 17B55 PDF BibTeX XML Cite \textit{H. Safa}, Commun. Algebra 50, No. 7, 2983--2996 (2022; Zbl 07534133) Full Text: DOI OpenURL
Parcet, Javier; Ricard, Éric; de la Salle, Mikael Fourier multipliers in \({\text{SL}_n}(\mathbf{R})\). (English) Zbl 07513360 Duke Math. J. 171, No. 6, 1235-1297 (2022). MSC: 22E46 43A80 46L51 PDF BibTeX XML Cite \textit{J. Parcet} et al., Duke Math. J. 171, No. 6, 1235--1297 (2022; Zbl 07513360) Full Text: DOI OpenURL
Pandey, Mani Shankar; Upadhyay, Sumit Kumar Classification of multiplicative Lie algebra structures on a finite group. (English) Zbl 07499463 Colloq. Math. 168, No. 1, 25-34 (2022). MSC: 17Bxx 22-XX 19C09 20F12 PDF BibTeX XML Cite \textit{M. S. Pandey} and \textit{S. K. Upadhyay}, Colloq. Math. 168, No. 1, 25--34 (2022; Zbl 07499463) Full Text: DOI OpenURL
Niroomand, Peyman; Shamsaki, Afsaneh On characterizing nilpotent Lie algebra by their multiplier, \(s(L)=6, 7\). (English) Zbl 07490193 Result. Math. 77, No. 2, Paper No. 82, 24 p. (2022). MSC: 17B30 17B05 17B99 PDF BibTeX XML Cite \textit{P. Niroomand} and \textit{A. Shamsaki}, Result. Math. 77, No. 2, Paper No. 82, 24 p. (2022; Zbl 07490193) Full Text: DOI OpenURL
Edalatzadeh, Behrouz; Javan, Arash; Salemkar, Ali Reza Non-abelian tensor product of precrossed modules in Lie algebras, structure and applications. (English) Zbl 07482324 Commun. Algebra 50, No. 3, 927-939 (2022). MSC: 18G50 17B55 18G05 20J05 18G60 19C09 PDF BibTeX XML Cite \textit{B. Edalatzadeh} et al., Commun. Algebra 50, No. 3, 927--939 (2022; Zbl 07482324) Full Text: DOI OpenURL
McKee, Andrew; Pourshahami, Reyhaneh; Todorov, Ivan G.; Turowska, Lyudmila Central and convolution Herz-Schur multipliers. (English) Zbl 07467822 New York J. Math. 28, 1-43 (2022). MSC: 46L55 PDF BibTeX XML Cite \textit{A. McKee} et al., New York J. Math. 28, 1--43 (2022; Zbl 07467822) Full Text: arXiv Link OpenURL
Domínguez, Jesús Emilio; Segovia, Carlos Extending free actions of finite groups on surfaces. (English) Zbl 1478.57027 Topology Appl. 305, Article ID 107898, 14 p. (2022). Reviewer: Bruno Zimmermann (Trieste) MSC: 57M60 57S17 57S25 PDF BibTeX XML Cite \textit{J. E. Domínguez} and \textit{C. Segovia}, Topology Appl. 305, Article ID 107898, 14 p. (2022; Zbl 1478.57027) Full Text: DOI arXiv OpenURL
Prins, Abraham Love On the projective character tables of the maximal subgroups of \(M_{11}\), \(M_{12}\) and Aut\((M_{12})\). (English) Zbl 07488103 Adv. Group Theory Appl. 12, 47-70 (2021). MSC: 20C15 20C25 PDF BibTeX XML Cite \textit{A. L. Prins}, Adv. Group Theory Appl. 12, 47--70 (2021; Zbl 07488103) Full Text: Link OpenURL
Prins, Abraham Love On a two-fold cover \(2.(2^6 \cdot G_2 (2))\) of a maximal subgroup of Rudvalis group Ru. (English) Zbl 07486855 Proyecciones 40, No. 4, 1011-1029 (2021). MSC: 20C15 20C40 PDF BibTeX XML Cite \textit{A. L. Prins}, Proyecciones 40, No. 4, 1011--1029 (2021; Zbl 07486855) Full Text: DOI OpenURL
Saeedi, Farshid; Akbarossadat, Nafiseh On the dimension of non-abelian tensor squares of \(n\)-Lie algebras. (English) Zbl 07472877 Tamkang J. Math. 52, No. 3, 363-381 (2021). MSC: 17B99 16W25 PDF BibTeX XML Cite \textit{F. Saeedi} and \textit{N. Akbarossadat}, Tamkang J. Math. 52, No. 3, 363--381 (2021; Zbl 07472877) Full Text: DOI OpenURL
Thomas, V. Z. On Schurs exponent property and its relation to Noether’s Rationality problem. (English) Zbl 07453736 Indian J. Pure Appl. Math. 52, No. 3, 729-734 (2021). MSC: 20B05 20D10 20D15 20F05 20F14 20F18 20G10 20J05 20J06 PDF BibTeX XML Cite \textit{V. Z. Thomas}, Indian J. Pure Appl. Math. 52, No. 3, 729--734 (2021; Zbl 07453736) Full Text: DOI arXiv OpenURL
Arabyani, H. Some results on the higher multiplier of a pair of groups. (English) Zbl 07449405 Southeast Asian Bull. Math. 45, No. 4, 429-435 (2021). MSC: 20E34 20E22 20F05 20C25 PDF BibTeX XML Cite \textit{H. Arabyani}, Southeast Asian Bull. Math. 45, No. 4, 429--435 (2021; Zbl 07449405) OpenURL
McKee, Andrew Multipliers and duality for group actions. (English) Zbl 07441170 J. Fourier Anal. Appl. 27, No. 6, Paper No. 91, 13 p. (2021). MSC: 46L07 47L65 PDF BibTeX XML Cite \textit{A. McKee}, J. Fourier Anal. Appl. 27, No. 6, Paper No. 91, 13 p. (2021; Zbl 07441170) Full Text: DOI arXiv OpenURL
Arabyani, H. On dimension of derived algebra and the higher Schur multiplier of Lie algebras. (English) Zbl 07404532 Southeast Asian Bull. Math. 45, No. 1, 1-9 (2021). MSC: 17B30 17B60 PDF BibTeX XML Cite \textit{H. Arabyani}, Southeast Asian Bull. Math. 45, No. 1, 1--9 (2021; Zbl 07404532) OpenURL
Johari, Farangis; Niroomand, Peyman; Shamsaki, Afsaneh The Schur multiplier of a nilpotent Lie algebra with derived subalgebra of maximum dimension. (English) Zbl 1480.17015 Quaest. Math. 44, No. 6, 849-856 (2021). Reviewer: Ernest L. Stitzinger (Raleigh) MSC: 17B30 PDF BibTeX XML Cite \textit{F. Johari} et al., Quaest. Math. 44, No. 6, 849--856 (2021; Zbl 1480.17015) Full Text: DOI OpenURL
Rismanchian, Mohammad Reza Group extensions and marginal series of pair of groups. (English) Zbl 1476.20029 C. R., Math., Acad. Sci. Paris 359, No. 5, 631-638 (2021). Reviewer: Enrico Jabara (Venezia) MSC: 20E10 20F19 20J05 PDF BibTeX XML Cite \textit{M. R. Rismanchian}, C. R., Math., Acad. Sci. Paris 359, No. 5, 631--638 (2021; Zbl 1476.20029) Full Text: DOI OpenURL
Tsang, Cindy (Sin Yi) Hopf-Galois structures on finite extensions with quasisimple Galois group. (English) Zbl 1483.20005 Bull. Lond. Math. Soc. 53, No. 1, 148-160 (2021). Reviewer: Cornelius Greither (Neubiberg) MSC: 20B35 20D05 12F10 12H05 16T05 PDF BibTeX XML Cite \textit{C. Y. Tsang}, Bull. Lond. Math. Soc. 53, No. 1, 148--160 (2021; Zbl 1483.20005) Full Text: DOI arXiv OpenURL
Hatui, Sumana; Singla, Pooja On Schur multiplier and projective representations of Heisenberg groups. (English) Zbl 1483.20027 J. Pure Appl. Algebra 225, No. 11, Article ID 106742, 16 p. (2021). Reviewer: Enrico Jabara (Venezia) MSC: 20C25 20G05 20F18 20J06 PDF BibTeX XML Cite \textit{S. Hatui} and \textit{P. Singla}, J. Pure Appl. Algebra 225, No. 11, Article ID 106742, 16 p. (2021; Zbl 1483.20027) Full Text: DOI arXiv OpenURL
Eick, Bettina; Ghorbanzadeh, Taleea Jalaeeyan Computing the Schur multipliers of the Lie \(p\)-rings in the family defined by a symbolic Lie \(p\)-ring presentation. (English) Zbl 07354267 J. Symb. Comput. 106, 68-77 (2021). MSC: 20Fxx 20Dxx 20Cxx 19Cxx 17Bxx PDF BibTeX XML Cite \textit{B. Eick} and \textit{T. J. Ghorbanzadeh}, J. Symb. Comput. 106, 68--77 (2021; Zbl 07354267) Full Text: DOI OpenURL
Arabyani, Homayoon; Sadeghifard, Mohammad Javad On isoclinic extensions of Lie algebras and nilpotent Lie algebras. (English) Zbl 07341079 Discuss. Math., Gen. Algebra Appl. 41, No. 1, 15-22 (2021). MSC: 17B40 17B30 PDF BibTeX XML Cite \textit{H. Arabyani} and \textit{M. J. Sadeghifard}, Discuss. Math., Gen. Algebra Appl. 41, No. 1, 15--22 (2021; Zbl 07341079) Full Text: DOI OpenURL
McKee, Andrew Weak amenability for dynamical systems. (English) Zbl 1455.37007 Stud. Math. 258, No. 1, 53-70 (2021). MSC: 37A55 46L55 46L05 43A22 PDF BibTeX XML Cite \textit{A. McKee}, Stud. Math. 258, No. 1, 53--70 (2021; Zbl 1455.37007) Full Text: DOI arXiv OpenURL
Safa, Hesam On the dimension of the Schur \(\mathsf{Lie}\)-multiplier of a pair of Leibniz algebras. (English) Zbl 07282612 J. Algebra 567, 705-718 (2021). MSC: 17A32 17B55 18B99 PDF BibTeX XML Cite \textit{H. Safa}, J. Algebra 567, 705--718 (2021; Zbl 07282612) Full Text: DOI OpenURL
Costache, Tania Luminaţa A survey on projectively equivalent representations of finite groups. (English) Zbl 07405233 Surv. Math. Appl. 15, 425-458 (2020). MSC: 20C25 19C09 20B05 20C30 20K01 42A45 PDF BibTeX XML Cite \textit{T. L. Costache}, Surv. Math. Appl. 15, 425--458 (2020; Zbl 07405233) Full Text: Link OpenURL
Prins, A. L. A maximal subgroup \(2^{4+6}:(A_5) \times 3)\) of \(G_2(4)\) treated as a non-split extension \(\overline{G}=2^{6\cdot}(2^4:(A_5 \times 3))\). (English) Zbl 1474.20010 Adv. Group Theory Appl. 10, 43-66 (2020). MSC: 20C15 20C25 20E28 PDF BibTeX XML Cite \textit{A. L. Prins}, Adv. Group Theory Appl. 10, 43--66 (2020; Zbl 1474.20010) Full Text: Link OpenURL
Bagarello, Fabio; Russo, Francesco G. Realization of Lie algebras of high dimension via pseudo-bosonic operators. (English) Zbl 1481.17018 J. Lie Theory 30, No. 4, 925-938 (2020). MSC: 17B30 17B60 46K10 47L60 47N50 PDF BibTeX XML Cite \textit{F. Bagarello} and \textit{F. G. Russo}, J. Lie Theory 30, No. 4, 925--938 (2020; Zbl 1481.17018) Full Text: arXiv Link OpenURL
Akbarossadat, Seyedeh Nafiseh; Saeedi, Farshid On the dimension of the Schur multiplier of \(n\)-Lie algebras. (English) Zbl 1469.17003 Linear Multilinear Algebra 68, No. 7, 1465-1499 (2020). MSC: 17A42 19C09 15A75 15A69 PDF BibTeX XML Cite \textit{S. N. Akbarossadat} and \textit{F. Saeedi}, Linear Multilinear Algebra 68, No. 7, 1465--1499 (2020; Zbl 1469.17003) Full Text: DOI OpenURL
Blasco, Oscar; García-Bayona, Ismael New spaces of matrices with operator entries. (English) Zbl 07311593 Quaest. Math. 43, No. 5-6, 651-674 (2020). MSC: 47L10 46E40 47A56 15B05 46G10 47A08 PDF BibTeX XML Cite \textit{O. Blasco} and \textit{I. García-Bayona}, Quaest. Math. 43, No. 5--6, 651--674 (2020; Zbl 07311593) Full Text: DOI arXiv OpenURL
Niroomand, Peyman; Shamsaki, Afsaneh Nilpotent Lie algebras having the Schur multiplier of maximum dimension. (English) Zbl 07307593 Quaest. Math. 43, No. 9, 1239-1246 (2020). Reviewer: Ernest L. Stitzinger (Raleigh) MSC: 17B30 17B05 17B99 PDF BibTeX XML Cite \textit{P. Niroomand} and \textit{A. Shamsaki}, Quaest. Math. 43, No. 9, 1239--1246 (2020; Zbl 07307593) Full Text: DOI arXiv OpenURL
Tajnia, S.; Moghaddam, Mohammad Reza R. Cover and irreducible relative central extension of a pair of Lie algebras. (English) Zbl 1463.17020 Southeast Asian Bull. Math. 44, No. 3, 439-449 (2020). MSC: 17B30 17B99 PDF BibTeX XML Cite \textit{S. Tajnia} and \textit{M. R. R. Moghaddam}, Southeast Asian Bull. Math. 44, No. 3, 439--449 (2020; Zbl 1463.17020) OpenURL
Funar, Louis; Pitsch, Wolfgang The Schur multiplier of finite symplectic groups. (Multiplicateur de Schur des groupes symplectiques finis.) (English. French summary) Zbl 1457.57018 Bull. Soc. Math. Fr. 148, No. 3, 515-527 (2020). Reviewer: Bruno Zimmermann (Trieste) MSC: 57K20 57M50 55N25 19C09 20F38 PDF BibTeX XML Cite \textit{L. Funar} and \textit{W. Pitsch}, Bull. Soc. Math. Fr. 148, No. 3, 515--527 (2020; Zbl 1457.57018) Full Text: DOI arXiv OpenURL
Arabyani, Homayoon; Sadeghifard, Mohammad Javad; Sheikh-Mohseni, Sedigheh Some upper bounds for the dimension of the \(c\)-nilpotent multiplier of a pair of Lie algebras. (English) Zbl 1463.17017 Discuss. Math., Gen. Algebra Appl. 40, No. 2, 159-164 (2020). MSC: 17B30 17B60 17B99 PDF BibTeX XML Cite \textit{H. Arabyani} et al., Discuss. Math., Gen. Algebra Appl. 40, No. 2, 159--164 (2020; Zbl 1463.17017) Full Text: DOI OpenURL
Casas, José Manuel; Ravanbod, Hajar Some properties of the Schur multiplier and stem covers of Leibniz crossed modules. (English) Zbl 1453.17003 Bull. Malays. Math. Sci. Soc. (2) 43, No. 5, 3437-3456 (2020). Reviewer: Behrouz Edalatzadeh (Kermanshah) MSC: 17A32 17B55 18G05 PDF BibTeX XML Cite \textit{J. M. Casas} and \textit{H. Ravanbod}, Bull. Malays. Math. Sci. Soc. (2) 43, No. 5, 3437--3456 (2020; Zbl 1453.17003) Full Text: DOI arXiv OpenURL
Heidari, Mahin; Rismanchian, Mohammad Reza; Araskhan, Mehdi Schur multiplier and (residual) nilpotent Lie rings. (English) Zbl 1459.16038 Commun. Algebra 48, No. 12, 5321-5329 (2020). Reviewer: Mohd Arif Raza (Rabigh) MSC: 16W10 16W99 PDF BibTeX XML Cite \textit{M. Heidari} et al., Commun. Algebra 48, No. 12, 5321--5329 (2020; Zbl 1459.16038) Full Text: DOI OpenURL
Shamsaki, Afsaneh; Niroomand, Peyman; Johari, Farangis The Schur multiplier of a \(p\)-group with the derived subgroup of maximal order. (English) Zbl 1481.20072 Commun. Algebra 48, No. 11, 4948-4953 (2020). MSC: 20D15 20C25 PDF BibTeX XML Cite \textit{A. Shamsaki} et al., Commun. Algebra 48, No. 11, 4948--4953 (2020; Zbl 1481.20072) Full Text: DOI OpenURL
Shamsaki, Afsaneh; Niroomand, Peyman On characterizing nilpotent Lie algebras by their multiplier, \(s(L)=4\). (English) Zbl 1442.17012 Rend. Circ. Mat. Palermo (2) 69, No. 1, 259-272 (2020). Reviewer: Ernest L. Stitzinger (Raleigh) MSC: 17B30 PDF BibTeX XML Cite \textit{A. Shamsaki} and \textit{P. Niroomand}, Rend. Circ. Mat. Palermo (2) 69, No. 1, 259--272 (2020; Zbl 1442.17012) Full Text: DOI arXiv OpenURL
Johari, Farangis; Niroomand, Peyman Certain functors of nilpotent Lie algebras with the derived subalgebra of dimension two. (English) Zbl 1485.17023 J. Algebra Appl. 19, No. 1, Article ID 2050012, 11 p. (2020). MSC: 17B30 17B05 17B99 PDF BibTeX XML Cite \textit{F. Johari} and \textit{P. Niroomand}, J. Algebra Appl. 19, No. 1, Article ID 2050012, 11 p. (2020; Zbl 1485.17023) Full Text: DOI arXiv OpenURL
Biyogmam, Guy Roger; Safa, Hesam Correction to: “On the dimension of the \(c\)-nilpotent Schur Lie-multiplier of Leibniz algebras”. (English) Zbl 1473.17006 Commun. Algebra 48, No. 5, 2267-2269 (2020). Reviewer: Behrouz Edalatzadeh (Kermanshah) MSC: 17A32 17B30 17B55 PDF BibTeX XML Cite \textit{G. R. Biyogmam} and \textit{H. Safa}, Commun. Algebra 48, No. 5, 2267--2269 (2020; Zbl 1473.17006) Full Text: DOI OpenURL
Skripka, Anna Tracial bounds for multilinear Schur multipliers. (English) Zbl 1459.15023 Linear Algebra Appl. 590, 62-84 (2020). Reviewer: Nicolae Lupa (Timişoara) MSC: 15A45 15B48 15A69 PDF BibTeX XML Cite \textit{A. Skripka}, Linear Algebra Appl. 590, 62--84 (2020; Zbl 1459.15023) Full Text: DOI OpenURL
Donadze, G.; Ladra, M.; Páez-Guillán, P. Schur’s theorem and its relation to the closure properties of the non-abelian tensor product. (English) Zbl 1436.20049 Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 993-1002 (2020). MSC: 20E22 20F05 20J99 PDF BibTeX XML Cite \textit{G. Donadze} et al., Proc. R. Soc. Edinb., Sect. A, Math. 150, No. 2, 993--1002 (2020; Zbl 1436.20049) Full Text: DOI OpenURL
Bakshi, Rhea Palak; Ibarra, Dionne; Mukherjee, Sujoy; Nosaka, Takefumi; Przytycki, Józef H. Schur multipliers and second quandle homology. (English) Zbl 1439.57027 J. Algebra 552, 52-67 (2020). MSC: 57K12 19C09 20J06 20J05 PDF BibTeX XML Cite \textit{R. P. Bakshi} et al., J. Algebra 552, 52--67 (2020; Zbl 1439.57027) Full Text: DOI arXiv OpenURL
Hatui, Sumana Schur multipliers of special \(p\)-groups of rank 2. (English) Zbl 1471.20013 J. Group Theory 23, No. 1, 85-95 (2020). Reviewer: Igor Subbotin (Los Angeles) MSC: 20D15 20C25 20D60 PDF BibTeX XML Cite \textit{S. Hatui}, J. Group Theory 23, No. 1, 85--95 (2020; Zbl 1471.20013) Full Text: DOI arXiv OpenURL
Ahanjideh, Neda Finite groups with the same conjugacy class sizes as a finite simple group. (English) Zbl 1443.20012 Int. J. Group Theory 8, No. 1, 23-33 (2019). MSC: 20D06 20D05 20D20 20D60 20E45 PDF BibTeX XML Cite \textit{N. Ahanjideh}, Int. J. Group Theory 8, No. 1, 23--33 (2019; Zbl 1443.20012) Full Text: DOI OpenURL
Hoseini, Zahra; Saeedi, Farshid; Darabi, Hamid Characterization of capable nilpotent \(n\)-Lie algebras of class two by their Schur multipliers. (English) Zbl 1471.17011 Rend. Circ. Mat. Palermo (2) 68, No. 3, 541-551 (2019). MSC: 17A42 17B30 17D99 PDF BibTeX XML Cite \textit{Z. Hoseini} et al., Rend. Circ. Mat. Palermo (2) 68, No. 3, 541--551 (2019; Zbl 1471.17011) Full Text: DOI OpenURL
Casas, José Manuel; Insua, Manuel Avelino; rego, Natália Pacheco The Schur multiplier and stem covers of Leibniz \(n\)-algebras. (English) Zbl 1449.17007 Publ. Math. 95, No. 3-4, 437-468 (2019). Reviewer: Norbert Knarr (Stuttgart) MSC: 17A42 17A32 18G90 PDF BibTeX XML Cite \textit{J. M. Casas} et al., Publ. Math. 95, No. 3--4, 437--468 (2019; Zbl 1449.17007) Full Text: DOI OpenURL
Blasco, Oscar; García-Bayona, Ismael Schur product with operator-valued entries. (English) Zbl 07126944 Taiwanese J. Math. 23, No. 5, 1175-1199 (2019). MSC: 47-XX 46E40 47A56 15B05 PDF BibTeX XML Cite \textit{O. Blasco} and \textit{I. García-Bayona}, Taiwanese J. Math. 23, No. 5, 1175--1199 (2019; Zbl 07126944) Full Text: DOI arXiv Euclid OpenURL
Niroomand, Peyman; Johari, Farangis; Parvizi, Mohsen; Russo, Francesco G. Decomposition of the nonabelian tensor product of Lie algebras via the diagonal ideal. (English) Zbl 1435.17017 Bull. Malays. Math. Sci. Soc. (2) 42, No. 4, 1295-1304 (2019). MSC: 17B30 17B60 17B99 PDF BibTeX XML Cite \textit{P. Niroomand} et al., Bull. Malays. Math. Sci. Soc. (2) 42, No. 4, 1295--1304 (2019; Zbl 1435.17017) Full Text: DOI arXiv OpenURL
Rai, Pradeep K. On the dimension of the Schur multiplier of nilpotent Lie algebras. (English) Zbl 1455.17011 Commun. Algebra 47, No. 10, 3982-3986 (2019). Reviewer: Ernest L. Stitzinger (Raleigh) MSC: 17B30 17B56 PDF BibTeX XML Cite \textit{P. K. Rai}, Commun. Algebra 47, No. 10, 3982--3986 (2019; Zbl 1455.17011) Full Text: DOI arXiv OpenURL
Shamsaki, Afsaneh; Niroomand, Peyman The Schur multipliers of Lie algebras of maximal class. (English) Zbl 1429.17014 Int. J. Algebra Comput. 29, No. 5, 795-801 (2019). MSC: 17B30 PDF BibTeX XML Cite \textit{A. Shamsaki} and \textit{P. Niroomand}, Int. J. Algebra Comput. 29, No. 5, 795--801 (2019; Zbl 1429.17014) Full Text: DOI arXiv OpenURL
Niroomand, Peyman; Johari, Farangis Some results on the Schur multipliers of nilpotent Lie algebra. (English) Zbl 1435.17016 J. Algebra 534, 34-50 (2019). Reviewer: Ernest L. Stitzinger (Raleigh) MSC: 17B30 17B05 17B99 PDF BibTeX XML Cite \textit{P. Niroomand} and \textit{F. Johari}, J. Algebra 534, 34--50 (2019; Zbl 1435.17016) Full Text: DOI arXiv OpenURL
Blasco, Oscar; García-Bayona, Ismael A class of Schur multipliers of matrices with operator entries. (English) Zbl 07072364 Mediterr. J. Math. 16, No. 4, Paper No. 82, 16 p. (2019). MSC: 47L10 46E40 47A56 15B05 46G10 PDF BibTeX XML Cite \textit{O. Blasco} and \textit{I. García-Bayona}, Mediterr. J. Math. 16, No. 4, Paper No. 82, 16 p. (2019; Zbl 07072364) Full Text: DOI arXiv OpenURL
Chakaneh, Marzieh; Kaheni, Azam; Kayvanfar, Saeed On \(c\)-capability and \(n\)-isoclinic families of a specific class of groups. (English) Zbl 07069898 Proc. Indian Acad. Sci., Math. Sci. 129, No. 4, Paper No. 50, 9 p. (2019). MSC: 20D25 19C09 20C25 PDF BibTeX XML Cite \textit{M. Chakaneh} et al., Proc. Indian Acad. Sci., Math. Sci. 129, No. 4, Paper No. 50, 9 p. (2019; Zbl 07069898) Full Text: DOI OpenURL
Edalatzadeh, Behrouz Universal central extensions of Lie crossed modules over a fixed Lie algebra. (English) Zbl 1454.17012 Appl. Categ. Struct. 27, No. 2, 111-123 (2019). Reviewer: Tiago Macedo (São Paulo) MSC: 17B60 17B55 18G50 PDF BibTeX XML Cite \textit{B. Edalatzadeh}, Appl. Categ. Struct. 27, No. 2, 111--123 (2019; Zbl 1454.17012) Full Text: DOI OpenURL
Lal, Ramji; Upadhyay, Sumit Kumar Multiplicative Lie algebras and Schur multiplier. (English) Zbl 1473.17050 J. Pure Appl. Algebra 223, No. 9, 3695-3721 (2019). MSC: 17B60 17B56 20N99 PDF BibTeX XML Cite \textit{R. Lal} and \textit{S. K. Upadhyay}, J. Pure Appl. Algebra 223, No. 9, 3695--3721 (2019; Zbl 1473.17050) Full Text: DOI OpenURL
Meng, Qing; Wang, Liguang Weak Haagerup property of dynamical systems. (English) Zbl 1427.46046 Linear Multilinear Algebra 67, No. 7, 1294-1307 (2019). MSC: 46L55 22D25 PDF BibTeX XML Cite \textit{Q. Meng} and \textit{L. Wang}, Linear Multilinear Algebra 67, No. 7, 1294--1307 (2019; Zbl 1427.46046) Full Text: DOI OpenURL
Biyogmam, G. R.; Casas, J. M. The \(c\)-nilpotent Schur \(\mathsf{Lie}\)-multiplier of Leibniz algebras. (English) Zbl 1452.17003 J. Geom. Phys. 138, 55-69 (2019). Reviewer: Behrouz Edalatzadeh (Kermanshah) MSC: 17A32 17B30 17B55 PDF BibTeX XML Cite \textit{G. R. Biyogmam} and \textit{J. M. Casas}, J. Geom. Phys. 138, 55--69 (2019; Zbl 1452.17003) Full Text: DOI arXiv OpenURL
de Mendonça, Luis Augusto The weak commutativity construction for Lie algebras. (English) Zbl 1465.17018 J. Algebra 529, 145-173 (2019). MSC: 17B55 20F05 20J05 PDF BibTeX XML Cite \textit{L. A. de Mendonça}, J. Algebra 529, 145--173 (2019; Zbl 1465.17018) Full Text: DOI arXiv OpenURL
Bagarello, Fabio; Russo, Francesco G. On the presence of families of pseudo-bosons in nilpotent Lie algebras of arbitrary corank. (English) Zbl 1482.17027 J. Geom. Phys. 137, 124-131 (2019). MSC: 17B30 17B60 46K10 47L60 PDF BibTeX XML Cite \textit{F. Bagarello} and \textit{F. G. Russo}, J. Geom. Phys. 137, 124--131 (2019; Zbl 1482.17027) Full Text: DOI arXiv OpenURL
Biyogmam, Guy R. On the dimension of the \(c\)-nilpotent Schur Lie-multiplier of Leibniz algebras. (English) Zbl 1468.17002 Commun. Algebra 47, No. 3, 1091-1098 (2019); correction ibid. 8, No. 5, 2267-2269 (2020). Reviewer: Behrouz Edalatzadeh (Kermanshah) MSC: 17A32 17B30 17B55 PDF BibTeX XML Cite \textit{G. R. Biyogmam}, Commun. Algebra 47, No. 3, 1091--1098 (2019; Zbl 1468.17002) Full Text: DOI OpenURL
Divandari, M.; Pazandeh Shanbehbazari, F.; Niroomand, P.; Faramarzi Salles, A. On finite groups with a given number of exterior centralizers. (English) Zbl 1417.20006 Commun. Algebra 47, No. 1, 182-187 (2019). MSC: 20D60 20E34 20E07 20D25 20E22 PDF BibTeX XML Cite \textit{M. Divandari} et al., Commun. Algebra 47, No. 1, 182--187 (2019; Zbl 1417.20006) Full Text: DOI OpenURL
Mousavi, Azam K.; Moghaddam, Mohammad Reza R.; Eshrati, Mehdi Some inequalities for the multiplier of a pair of \(n\)-Lie algebras. (English) Zbl 1411.17010 Asian-Eur. J. Math. 12, No. 2, Article ID 1950028, 17 p. (2019). MSC: 17A42 17B30 PDF BibTeX XML Cite \textit{A. K. Mousavi} et al., Asian-Eur. J. Math. 12, No. 2, Article ID 1950028, 17 p. (2019; Zbl 1411.17010) Full Text: DOI OpenURL
Arabyani, Homayoon Some results on the \(c\)-nilpotent multiplier of a pair of Lie algebras. (English) Zbl 1409.17004 Bull. Iran. Math. Soc. 45, No. 1, 205-212 (2019). MSC: 17B30 PDF BibTeX XML Cite \textit{H. Arabyani}, Bull. Iran. Math. Soc. 45, No. 1, 205--212 (2019; Zbl 1409.17004) Full Text: DOI OpenURL
Wood, Melanie Matchett Nonabelian Cohen-Lenstra moments. (English) Zbl 1429.11204 Duke Math. J. 168, No. 3, 377-427 (2019). Reviewer: Günter Lettl (Graz) MSC: 11R29 11R45 PDF BibTeX XML Cite \textit{M. M. Wood}, Duke Math. J. 168, No. 3, 377--427 (2019; Zbl 1429.11204) Full Text: DOI arXiv Euclid OpenURL
Niroomand, Peyman; Johari, Farangis; Parvizi, Mohsen Capable Lie algebras with the derived subalgebra of dimension 2 over an arbitrary field. (English) Zbl 1472.17045 Linear Multilinear Algebra 67, No. 3, 542-554 (2019). MSC: 17B30 17B05 17B99 PDF BibTeX XML Cite \textit{P. Niroomand} et al., Linear Multilinear Algebra 67, No. 3, 542--554 (2019; Zbl 1472.17045) Full Text: DOI arXiv OpenURL
Smith, Stephen D. A survey: Bob Griess’s work on simple groups and their classification. (English) Zbl 1482.20010 Bull. Inst. Math., Acad. Sin. (N.S.) 13, No. 4, 365-382 (2018). Reviewer: Mohammad-Reza Darafsheh (Tehran) MSC: 20D05 20D06 20D08 20E42 20J06 PDF BibTeX XML Cite \textit{S. D. Smith}, Bull. Inst. Math., Acad. Sin. (N.S.) 13, No. 4, 365--382 (2018; Zbl 1482.20010) Full Text: DOI OpenURL
Ball, Joseph A.; Marx, Gregory; Vinnikov, Victor Interpolation and transfer-function realization for the noncommutative Schur-Agler class. (English) Zbl 1443.46039 Duduchava, Roland (ed.) et al., Operator theory in different settings and related applications, 26th international workshop on operator theory and its applications, IWOTA, Tbilisi, Georgia, July 6–10, 2015. Cham: Birkhäuser. Oper. Theory: Adv. Appl. 262, 23-116 (2018). Reviewer: Jaydeb Sarkar (Bangalore) MSC: 46L52 47A13 47A57 47B32 47A60 93B28 32A99 15A54 PDF BibTeX XML Cite \textit{J. A. Ball} et al., Oper. Theory: Adv. Appl. 262, 23--116 (2018; Zbl 1443.46039) Full Text: DOI arXiv OpenURL
Adian, Sergeĭ I.; Atabekyan, Varuzhan S. Central extensions of free periodic groups. (English. Russian original) Zbl 07025721 Sb. Math. 209, No. 12, 1677-1689 (2018); translation from Mat. Sb. 209, No. 12, 3-16 (2018). MSC: 20E22 20F50 PDF BibTeX XML Cite \textit{S. I. Adian} and \textit{V. S. Atabekyan}, Sb. Math. 209, No. 12, 1677--1689 (2018; Zbl 07025721); translation from Mat. Sb. 209, No. 12, 3--16 (2018) Full Text: DOI arXiv OpenURL
Niroomand, Peyman Classifying \(p\)-groups by their Schur multipliers. (English) Zbl 1424.20006 Math. Rep., Buchar. 20(70), No. 3, 279-284 (2018). Reviewer: Andrea Caranti (Trento) MSC: 20C25 20D15 20E34 20F18 20D60 PDF BibTeX XML Cite \textit{P. Niroomand}, Math. Rep., Buchar. 20(70), No. 3, 279--284 (2018; Zbl 1424.20006) OpenURL
Casas, J. M.; Insua, M. A. The Schur Lie-multiplier of Leibniz algebras. (English) Zbl 1464.17005 Quaest. Math. 41, No. 7, 917-936 (2018). MSC: 17A32 17B55 18B99 PDF BibTeX XML Cite \textit{J. M. Casas} and \textit{M. A. Insua}, Quaest. Math. 41, No. 7, 917--936 (2018; Zbl 1464.17005) Full Text: DOI arXiv OpenURL
Khamseh, Elaheh; Niri, Somaieh Alizadeh Classification of pair of nilpotent Lie algebras by their Schur multipliers. (English) Zbl 1413.17014 Math. Rep., Buchar. 20(70), No. 2, 177-185 (2018). MSC: 17B30 17B60 17B99 PDF BibTeX XML Cite \textit{E. Khamseh} and \textit{S. A. Niri}, Math. Rep., Buchar. 20(70), No. 2, 177--185 (2018; Zbl 1413.17014) OpenURL
Hatui, Sumana Characterization of finite \(p\)-groups by their Schur multiplier. (English) Zbl 1396.20015 Proc. Indian Acad. Sci., Math. Sci. 128, No. 4, Paper No. 49, 9 p. (2018). MSC: 20D15 20C25 20E34 PDF BibTeX XML Cite \textit{S. Hatui}, Proc. Indian Acad. Sci., Math. Sci. 128, No. 4, Paper No. 49, 9 p. (2018; Zbl 1396.20015) Full Text: DOI arXiv OpenURL
Rai, Pradeep K. On classification of groups having Schur multiplier of maximum order. II. (English) Zbl 1448.20020 Arch. Math. 111, No. 2, 129-133 (2018). MSC: 20D15 20C25 20D60 19C09 20E34 PDF BibTeX XML Cite \textit{P. K. Rai}, Arch. Math. 111, No. 2, 129--133 (2018; Zbl 1448.20020) Full Text: DOI OpenURL
Khademi, Masumeh; Gholami, Ahmad; Mahmudi, Fatemeh Some results and properties on natural \(n\)-central extentions of groups. (English) Zbl 1399.20045 Southeast Asian Bull. Math. 42, No. 1, 41-50 (2018). MSC: 20E22 20C25 20F14 20F18 PDF BibTeX XML Cite \textit{M. Khademi} et al., Southeast Asian Bull. Math. 42, No. 1, 41--50 (2018; Zbl 1399.20045) OpenURL
McKee, A.; Todorov, I. G.; Turowska, L. Herz-Schur multipliers of dynamical systems. (English) Zbl 1400.46046 Adv. Math. 331, 387-438 (2018). MSC: 46L07 46L55 47L65 47L10 PDF BibTeX XML Cite \textit{A. McKee} et al., Adv. Math. 331, 387--438 (2018; Zbl 1400.46046) Full Text: DOI arXiv OpenURL
Niroomand, Peyman; Johari, Farangis The structure, capability and the Schur multiplier of generalized Heisenberg Lie algebras. (English) Zbl 1428.17010 J. Algebra 505, 482-489 (2018). Reviewer: Ernest L. Stitzinger (Raleigh) MSC: 17B30 17B05 17B99 PDF BibTeX XML Cite \textit{P. Niroomand} and \textit{F. Johari}, J. Algebra 505, 482--489 (2018; Zbl 1428.17010) Full Text: DOI arXiv OpenURL
Morita, Jun Simple Kac-Moody groups with trivial Schur multipliers. (English) Zbl 1394.20029 Sci. China, Math. 61, No. 2, 311-316 (2018). MSC: 20G44 20E32 19C09 PDF BibTeX XML Cite \textit{J. Morita}, Sci. China, Math. 61, No. 2, 311--316 (2018; Zbl 1394.20029) Full Text: DOI OpenURL
Biyogmam, G. R.; Casas, J. M. On \(\mathsf{Lie}\)-isoclinic Leibniz algebras. (English) Zbl 1397.17003 J. Algebra 499, 337-357 (2018). Reviewer: Manuel Avelino Insua Hermo (Noia) MSC: 17A32 17B55 18B99 PDF BibTeX XML Cite \textit{G. R. Biyogmam} and \textit{J. M. Casas}, J. Algebra 499, 337--357 (2018; Zbl 1397.17003) Full Text: DOI arXiv OpenURL
Bagarello, Fabio; Russo, Francesco G. A description of pseudo-bosons in terms of nilpotent Lie algebras. (English) Zbl 1481.17017 J. Geom. Phys. 125, 1-11 (2018). MSC: 17B30 17B60 46K10 47L60 PDF BibTeX XML Cite \textit{F. Bagarello} and \textit{F. G. Russo}, J. Geom. Phys. 125, 1--11 (2018; Zbl 1481.17017) Full Text: DOI arXiv OpenURL
Salemkar, Ali Reza; Aslizadeh, Arezoo The nilpotent multipliers of the direct sum of Lie algebras. (English) Zbl 1392.17011 J. Algebra 495, 220-232 (2018). MSC: 17B30 17B05 PDF BibTeX XML Cite \textit{A. R. Salemkar} and \textit{A. Aslizadeh}, J. Algebra 495, 220--232 (2018; Zbl 1392.17011) Full Text: DOI OpenURL
Niroomand, P.; Erfanian, A.; Parvizi, M.; Tolue, B. Non-exterior square graph of finite group. (English) Zbl 07380903 Filomat 31, No. 3, 877-883 (2017). MSC: 05C25 20P05 PDF BibTeX XML Cite \textit{P. Niroomand} et al., Filomat 31, No. 3, 877--883 (2017; Zbl 07380903) Full Text: DOI OpenURL
Jafari, Seid Hadi Characterization of finite \(p\)-groups by the order of their Schur multipliers (\(t(G)=7\)). (English) Zbl 1403.20016 Bull. Iran. Math. Soc. 43, No. 7, 2567-2576 (2017). MSC: 20C25 20D15 PDF BibTeX XML Cite \textit{S. H. Jafari}, Bull. Iran. Math. Soc. 43, No. 7, 2567--2576 (2017; Zbl 1403.20016) Full Text: Link OpenURL
Arabyani, H. Bounds for the dimension of the \(c\)-nilpotent multiplier of a pair of Lie algebras. (English) Zbl 1458.17007 Bull. Iran. Math. Soc. 43, No. 7, 2411-2418 (2017). Reviewer: Hesam Safa (Bojnord) MSC: 17B30 16W25 PDF BibTeX XML Cite \textit{H. Arabyani}, Bull. Iran. Math. Soc. 43, No. 7, 2411--2418 (2017; Zbl 1458.17007) Full Text: Link OpenURL
Antony, A. E.; Donadze, G.; Sivaprasad, V. P.; Thomas, V. Z. The second stable homotopy group of the Eilenberg-Maclane space. (English) Zbl 1430.55006 Math. Z. 287, No. 3-4, 1327-1342 (2017). MSC: 55P20 20E22 20D99 20J05 55P40 55Q99 PDF BibTeX XML Cite \textit{A. E. Antony} et al., Math. Z. 287, No. 3--4, 1327--1342 (2017; Zbl 1430.55006) Full Text: DOI OpenURL
Higgs, R. J. Commutators and projective character tables. (English) Zbl 1375.20009 Commun. Algebra 45, No. 12, 5180-5187 (2017). MSC: 20C25 20C15 PDF BibTeX XML Cite \textit{R. J. Higgs}, Commun. Algebra 45, No. 12, 5180--5187 (2017; Zbl 1375.20009) Full Text: DOI OpenURL
Rismanchian, Mohammad Reza; Molavi, Mousa; Araskhan, Mehdi On dimension and homological methods of the (higher) Schur multiplier of a pair of Lie algebras. (English) Zbl 1414.17009 Commun. Algebra 45, No. 11, 4707-4716 (2017). MSC: 17B30 17B55 PDF BibTeX XML Cite \textit{M. R. Rismanchian} et al., Commun. Algebra 45, No. 11, 4707--4716 (2017; Zbl 1414.17009) Full Text: DOI OpenURL
Hatui, Sumana Finite \(p\)-groups having Schur multiplier of maximum order. (English) Zbl 1421.20004 J. Algebra 492, 490-497 (2017). MSC: 20D15 20C25 20D60 19C09 20E34 PDF BibTeX XML Cite \textit{S. Hatui}, J. Algebra 492, 490--497 (2017; Zbl 1421.20004) Full Text: DOI arXiv OpenURL
Schlichting, Marco Euler class groups and the homology of elementary and special linear groups. (English) Zbl 1387.19002 Adv. Math. 320, 1-81 (2017). Reviewer: Wilberd van der Kallen (Utrecht) MSC: 19B14 19D45 20J05 PDF BibTeX XML Cite \textit{M. Schlichting}, Adv. Math. 320, 1--81 (2017; Zbl 1387.19002) Full Text: DOI arXiv Link OpenURL
Rai, Pradeep K. A note on the order of the Schur multiplier of \(p\)-groups. (English) Zbl 1371.20014 Int. J. Algebra Comput. 27, No. 5, 495-500 (2017). MSC: 20D15 20D60 20C25 PDF BibTeX XML Cite \textit{P. K. Rai}, Int. J. Algebra Comput. 27, No. 5, 495--500 (2017; Zbl 1371.20014) Full Text: DOI arXiv OpenURL
Lassueur, Caroline; Thévenaz, Jacques Universal \(p^\prime\)-central extensions. (English) Zbl 1386.19004 Expo. Math. 35, No. 3, 237-251 (2017). Reviewer: Wilberd van der Kallen (Utrecht) MSC: 19C09 20C25 20J06 PDF BibTeX XML Cite \textit{C. Lassueur} and \textit{J. Thévenaz}, Expo. Math. 35, No. 3, 237--251 (2017; Zbl 1386.19004) Full Text: DOI OpenURL
Niroomand, Peyman; Russo, Francesco G. On the tensor degree of finite groups. (English) Zbl 1424.20050 Ars Comb. 131, 273-283 (2017). MSC: 20J05 20C25 20D15 20D60 20E22 PDF BibTeX XML Cite \textit{P. Niroomand} and \textit{F. G. Russo}, Ars Comb. 131, 273--283 (2017; Zbl 1424.20050) Full Text: arXiv OpenURL
Lotfi, Shokufeh; Moghaddam, Mohammad Reza R.; Taheri, S. Mostafa Some properties of perfect Lie rings. (English) Zbl 1368.16043 JP J. Algebra Number Theory Appl. 39, No. 2, 247-260 (2017). MSC: 16W10 PDF BibTeX XML Cite \textit{S. Lotfi} et al., JP J. Algebra Number Theory Appl. 39, No. 2, 247--260 (2017; Zbl 1368.16043) Full Text: DOI OpenURL
Navarro, Gabriel; Rizo, Noelia Certain irreducible characters over a normal subgroup. (English) Zbl 1397.20018 J. Group Theory 20, No. 4, 621-635 (2017). Reviewer: Robert W. van der Waall (Amsterdam) MSC: 20C15 20C25 20D45 PDF BibTeX XML Cite \textit{G. Navarro} and \textit{N. Rizo}, J. Group Theory 20, No. 4, 621--635 (2017; Zbl 1397.20018) Full Text: DOI arXiv OpenURL
Levene, R. H.; Spronk, N.; Todorov, I. G.; Turowska, L. Schur multipliers of Cartan pairs. (English) Zbl 1377.46042 Proc. Edinb. Math. Soc., II. Ser. 60, No. 2, 413-440 (2017). MSC: 46L10 46L07 PDF BibTeX XML Cite \textit{R. H. Levene} et al., Proc. Edinb. Math. Soc., II. Ser. 60, No. 2, 413--440 (2017; Zbl 1377.46042) Full Text: DOI arXiv OpenURL
Sambale, Benjamin Isotypies for the quasisimple groups with exceptional Schur multiplier. (English) Zbl 1431.20010 J. Algebra Appl. 16, No. 4, Article ID 1750078, 16 p. (2017). MSC: 20D06 20C15 20C20 20C25 20C33 PDF BibTeX XML Cite \textit{B. Sambale}, J. Algebra Appl. 16, No. 4, Article ID 1750078, 16 p. (2017; Zbl 1431.20010) Full Text: DOI OpenURL
Pinedo, H. On the total component and the torsion part of the partial Schur multiplier. (English) Zbl 1388.20021 Commun. Algebra 45, No. 3, 954-966 (2017). MSC: 20C25 20M30 19C09 PDF BibTeX XML Cite \textit{H. Pinedo}, Commun. Algebra 45, No. 3, 954--966 (2017; Zbl 1388.20021) Full Text: DOI OpenURL
Farjoun, Emmanuel D.; Segev, Yoav Relative Schur multipliers and universal extensions of group homomorphisms. (English) Zbl 1368.19001 Arone, Gregory (ed.) et al., Manifolds and \(K\)-theory. Conference on manifolds, \(K\)-theory, and related topics, Dubrovnik, Croatia, June 23–27, 2014. Proceedings. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-1700-0/pbk; 978-1-4704-3665-0/ebook). Contemporary Mathematics 682, 65-80 (2017). Reviewer: Sergey Sinchuk (Sertolovo) MSC: 19C09 20E22 55U99 PDF BibTeX XML Cite \textit{E. D. Farjoun} and \textit{Y. Segev}, Contemp. Math. 682, 65--80 (2017; Zbl 1368.19001) Full Text: DOI arXiv Link OpenURL
Darabi, Hamid; Saeedi, Farshid On the Schur multiplier of \(n\)-Lie algebras. (English) Zbl 1375.17004 J. Lie Theory 27, No. 1, 271-281 (2017). MSC: 17A42 17A60 PDF BibTeX XML Cite \textit{H. Darabi} and \textit{F. Saeedi}, J. Lie Theory 27, No. 1, 271--281 (2017; Zbl 1375.17004) Full Text: Link OpenURL
Ball, Joseph A.; Bolotnikov, Vladimir Contractive multipliers from Hardy space to weighted Hardy space. (English) Zbl 1364.30040 Proc. Am. Math. Soc. 145, No. 6, 2411-2425 (2017). Reviewer: Kehe Zhu (Albany) MSC: 30E05 30H10 47A57 46E22 PDF BibTeX XML Cite \textit{J. A. Ball} and \textit{V. Bolotnikov}, Proc. Am. Math. Soc. 145, No. 6, 2411--2425 (2017; Zbl 1364.30040) Full Text: DOI arXiv OpenURL