×

Double Fourier series on a sphere: Applications to elliptic and vorticity equations. (English) Zbl 0961.76062

From the summary: The solutions of elliptic and vorticity equations on a sphere are studied using double Fourier series as orthogonal basis functions. The basis functions incorporate sine series weighted by cosine latitude as meridional basis functions for even zonal wavenumbers other than zero to meet the pole condition. The method is applied to the Poisson equation and to the vorticity equation with the use of Fourier and spherical harmonics filters, and its accuracy is tested for rotating Rossby-Haurwitz waves.

MSC:

76M22 Spectral methods applied to problems in fluid mechanics
76U05 General theory of rotating fluids

Software:

chammp; Mathematica
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barros, S. R.M., Multigrid methods for two- and three-dimensional Poisson-type equations on the sphere, J. Comput. Phys., 92, 313 (1991) · Zbl 0713.65073
[2] Boer, G. J.; Steinberg, L., Fourier series on spheres, Atmosphere, 13, 180 (1975)
[3] Bourke, W., An efficient, one-level, primitive-equation spectral model, Mon. Weather Rev., 100, 683 (1972)
[4] Boyd, J. P., The choice of spectral functions on a sphere for boundary and eigenvalue problems: A comparison of Chebyshev, Fourier and associated Legendre expansions, Mon. Weather Rev., 106, 1184 (1978)
[5] Boyd, J. P., (Brebbia, C. A.; Orszag, S. A., Chebyshev and Fourier spectral methods, in Lecture Notes in Engineering (1989), Springer-Verlag: Springer-Verlag New York)
[6] Dennis, S. C.; Quartapelle, L., Spectral algorithms for vector elliptic equations in a spherical gap, J. Comput. Phys., 61, 218 (1985) · Zbl 0591.65081
[7] Dilts, G. A., Computation of spherical harmonic expansion coefficients via FFT’s, J. Comput. Phys., 57, 439 (1985) · Zbl 0562.65098
[8] Elowitz, M.; Hill, F.; Duvall, T. L., A test of a modified algorithm for computing spherical harmonic expansion coefficients using an FFT, J. Comput. Phys., 80, 506 (1989) · Zbl 0668.65016
[9] Gates, W. L., The atmospheric model intercomparison project, Bull. Amer. Meteor. Soc., 73, 1962 (1992)
[10] Haltiner, G. J.; Williams, R. T., Numerical Weather Prediction and Dynamic Meteorology (1980)
[11] Haurwitz, B., The motion of atmospheric disturbances on the spherical earth, J. Mar. Res. III, 3, 255 (1940)
[12] Hortal, M.; Simmons, A. J., Use of reduced Gaussian grids in spectral models, Mon. Weather, Rev., 119, 1057 (1991)
[13] Hoskins, D. J., Stability of the Rossby-Haurwitz wave, Quart. J. Roy. Meteor. Soc., 99, 723 (1973)
[14] Hoskins, D. J.; Simmons, A. J., A multi-layer spectral model and the semi-implicit method, Quart. J. Roy. Meteor. Soc., 101, 637 (1975)
[15] Jacob, R.; Hack, J.; Williamson, D. L., Spectral transform solutions to the shallow water test set, J. Comput. Phys., 119, 164 (1995) · Zbl 0878.76059
[16] Jukes, M. N.; McIntyre, M. E., A high-resolution one-layer model of breaking planetary waves in the stratosphere, Nature, 328, 590 (1987)
[17] Merilees, P. E., The pseudospectral approximation applied to the shallow water equations on a sphere, Atmosphere, 11, 13 (1973)
[18] Moorthi, S.; Higgins, R. Y., Application of Fast Fourier Transform to the direct solution of a class of two-dimensional separable elliptic equations on the sphere, Mon. Weather Rev., 121, 290 (1993)
[19] Nehrkorn, T., On the computation of Legendre functions in spectral models, Mon. Weather Rev., 118, 2248 (1990)
[20] Orszag, S. A., Transform method for the calculation of vector-coupled sums: Application to the spectral form of the vorticity equation, J. Atmos. Sci., 27, 890 (1970)
[21] Orszag, S. A., Fourier series on spheres, Mon. Weather Rev., 102, 56 (1974)
[22] Press, W. H.; Teukolsky, S. A.; Vettering, W. T.; Flannery, B. P., Numerical Recipes (1992)
[23] Robert, A. J., The integration of a low order spectral form of the primitive meteorological equations, J. Meteor. Soc. Jpn., 44, 237 (1966)
[24] Spotz, W. F.; Taylor, M. A.; Swartztrauber, P. N., Fast shallow-water equations solvers in latitude-longitude coordinates, J. Comput. Phys., 145, 432 (1998) · Zbl 0928.76078
[25] Swartztrauber, P. N., The direct solution of the discrete Poisson equation on the surface of a sphere, J. Comput. Phys., 15, 46 (1974)
[26] Swartztrauber, P. N., On the spectral approximation of discrete scalar and vector functions on the sphere, SIAM J. Numer. Anal., 16, 934 (1979) · Zbl 0442.41018
[27] Swartztrauber, P. N., Spectral transform methods for solving the shallow-water equations on the sphere, Mon. Weather Rev., 124, 730 (1996)
[28] Taylor, M.; Tribbia, J.; Iskandarani, M., The spectral element method for the shallow water equations on the sphere, J. Comput. Phys., 130, 92 (1997) · Zbl 0868.76072
[29] Williamson, D. L.; Drake, J. B.; Hack, J. J.; Jakob, R.; Swartztrauber, P. N., A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys., 102, 211 (1992) · Zbl 0756.76060
[30] Wolfram, S., Mathematica (1988)
[31] Yee, S. Y.K., Studies on Fourier series on spheres, Mon. Weather Rev., 108, 676 (1980)
[32] Yee, S. Y.K., Solution of Poisson’s equation on a sphere by truncated double Fourier series, Mon. Weather Rev., 109, 501 (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.