×

A fast Cauchy-Riemann solver. (English) Zbl 0428.65055


MSC:

65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65F05 Direct numerical methods for linear systems and matrix inversion
65E05 General theory of numerical methods in complex analysis (potential theory, etc.)
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
86A10 Meteorology and atmospheric physics
31A25 Boundary value and inverse problems for harmonic functions in two dimensions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Eduard Batschelet, Über die numerische Auflösung von Ranswertproblemen bei elliptischen partiellen Differentialgleichungen, Z. Angew. Math. Physik 3 (1952), 165 – 193 (German). · Zbl 0046.34501
[2] J. H. Bramble and B. E. Hubbard, Approximation of derivatives by finite difference methods in elliptic boundary value problems, Contributions to Differential Equations 3 (1964), 399 – 410. · Zbl 0142.12003
[3] J. H. Bramble and B. E. Hubbard, A finite difference analogue of the Neumann problem for Poisson’s equation, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2 (1965), 1 – 14. · Zbl 0141.33201
[4] O. BUNEMAN, A Compact Non-Iterative Poisson Solver, SUIPR Report No. 294, Inst. Plasma Research, Stanford Univ., May 1969, 11 pp.
[5] B. L. Buzbee, G. H. Golub, and C. W. Nielson, On direct methods for solving Poisson’s equations, SIAM J. Numer. Anal. 7 (1970), 627 – 656. · Zbl 0217.52902 · doi:10.1137/0707049
[6] Lothar Collatz, The numerical treatment of differential equations. 3d ed, Translated from a supplemented version of the 2d German edition by P. G. Williams. Die Grundlehren der mathematischen Wissenschaften, Bd. 60, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. · Zbl 0086.32601
[7] J. W. COOLEY, P. A. W. LEWIS & P. D. WELCH, ”The finite Fourier transform,” IEEE Trans. Audio and Electroacoustics, v. 17, 1969, pp. 77-85.
[8] E. G. D\(^{\prime}\)jakonov, On certain iterative methods for solving nonlinear difference equations, Conference on Numerical Solution of Differential Equations (Dundee, 1969), Springer, Berlin, 1969, pp. 7 – 22.
[9] Fred W. Dorr, The direct solution of the discrete Poisson equation on a rectangle., SIAM Rev. 12 (1970), 248 – 263. · Zbl 0208.42403 · doi:10.1137/1012045
[10] T. ELVIUS & A. SUNDSTRÖM, ”Computationally efficient schemes and boundary conditions for a fine-mesh barotropic model based on the shallow-water equations,” Tellus, v. 25, 1973, pp. 132-156.
[11] George E. Forsythe and Wolfgang R. Wasow, Finite-difference methods for partial differential equations, Applied Mathematics Series, John Wiley & Sons, Inc., New York-London, 1960. · Zbl 0099.11103
[12] D. Fischer, G. Golub, O. Hald, C. Leiva, and O. Widlund, On Fourier-Toeplitz methods for separable elliptic problems, Math. Comp. 28 (1974), 349 – 368. · Zbl 0277.65065
[13] S. GERSCHGORIN; ”Fehlerabschätzung für das Differenzverfahren zur Lösung partieller Differentialgleichungen,” Z. Angew. Math. Mech., v. 10, 1930, pp. 373-382.
[14] M. GHIL, ”The initialization problem in numerical weather prediction,” in Improperly Posed Boundary Value Problems , Research Notes in Math., vol. 1, Pitman, London, 1975, pp. 105-123.
[15] M. GHIL, Initialization by Compatible Balancing, Report 75-16, Inst. Comp. Appl. Sci. Engr., Hampton, Virginia, 1975, 38 pp. · Zbl 0334.76048
[16] M. GHIL & B. SHKOLLER, ”Wind laws for shockless initialization,” Ann. Meteor. (Neue Folge), v. 11, 1976, pp. 112-115. · Zbl 0334.76049
[17] M. GHIL, B. SHKOLLER & V. YANGARBER, ”A balanced diagnostic system compatible with a barotropic prognostic model,” Mon. Wea. Rev., v. 105, 1977, pp. 1223-1238.
[18] G. GOLUB, ”Direct methods for solving elliptic difference equations,” in Symposium on the Theory of Numerical Analysis , Lecture Notes in Math., vol. 193, Springer-Verlag, Berlin, 1971, pp. 1-19.
[19] James E. Gunn, The solution of elliptic difference equations by semi-explicit iterative techniques, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2 (1965), 24 – 45. · Zbl 0137.33301
[20] Bertil Gustafsson, An alternating direction implicit method for solving the shallow water equations, J. Computational Phys. 7 (1971), 239 – 254. · Zbl 0251.76011
[21] R. W. Hockney, A fast direct solution of Poisson’s equation using Fourier analysis, J. Assoc. Comput. Mach. 12 (1965), 95 – 113. · Zbl 0139.10902 · doi:10.1145/321250.321259
[22] R. W. HOCKNEY, ”The potential calculation and some applications,” in Methods in Computational Physics , vol. 9 (Plasma Physics), Academic Press, New York, 1969, pp. 135-211.
[23] W. E. LANGLOIS, Vorticity-Stream Function Computation of Incompressible Fluid Flow with an Almost-Flat Free Surface, IBM Research Report RJ 1794 (#26092), 1976, 8 pp.
[24] H. LOMAX & E. D. MARTIN, ”Fast direct numerical solution of the nonhomogeneous Cauchy-Riemann equations,” J. Computational Phys., v. 15, 1974, pp. 55-80. · Zbl 0294.65053
[25] E. D. MARTIN & H. LOMAX, Rapid Finite-Difference Computation of Subsonic and Transonic Aerodynamic Flows, AIAA Paper No. 74-11, 1974, 13 pp.
[26] E. D. MARTIN & H. LOMAX, Variants and Extensions of a Fast Direct Numerical Cauchy-Riemann Solver, with Illustrative Applications, NASA Tech. Note TN D-7934, 1977, 94 pp.
[27] Joseph Oliger and Arne Sundström, Theoretical and practical aspects of some initial boundary value problems in fluid dynamics, SIAM J. Appl. Math. 35 (1978), no. 3, 419 – 446. · Zbl 0397.35067 · doi:10.1137/0135035
[28] Patrick J. Roache, Computational fluid dynamics, Hermosa Publishers, Albuquerque, N.M., 1976. With an appendix (”On artificial viscosity”) reprinted from J. Computational Phys. 10 (1972), no. 2, 169 – 184; Revised printing. · Zbl 0247.76035
[29] U. Schumann and Roland A. Sweet, A direct method for the solution of Poisson’s equation with Neumann boundary conditions on a staggered grid of arbitrary size, J. Computational Phys. 20 (1976), no. 2, 171 – 182.
[30] Paul N. Swarztrauber, A direct method for the discrete solution of separable elliptic equations, SIAM J. Numer. Anal. 11 (1974), 1136 – 1150. · Zbl 0292.65054 · doi:10.1137/0711086
[31] Roland A. Sweet, A generalized cyclic reduction algorithm, SIAM J. Numer. Anal. 11 (1974), 506 – 520. · Zbl 0253.65061 · doi:10.1137/0711042
[32] O. WIDLUND, ”On the use of fast methods for separable finite-difference equations for the solution of general elliptic problems,” in Sparse Matrices and Their Applications , Plenum Press, New York, 1972, pp. 121-131.
[33] Olof Widlund, Capacitance matrix methods for Helmholtz’s equation on general bounded regions, Numerical treatment of differential equations (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1976) Springer, Berlin, 1978, pp. 209 – 219. Lecture Notes in Math., Vol. 631. · Zbl 0371.65021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.