×

A comparison of six methods for stabilizing population dynamics. (English) Zbl 1412.92267

Summary: Over the last two decades, several methods have been proposed for stabilizing the dynamics of biological populations. However, these methods have typically been evaluated using different population dynamics models and in the context of very different concepts of stability, which makes it difficult to compare their relative efficiencies. Moreover, since the dynamics of populations are dependent on the life-history of the species and its environment, it is conceivable that the stabilizing effects of control methods would also be affected by such factors, a complication that has typically not been investigated. In this study, we compare six different control methods with respect to their efficiency at inducing a common level of enhancement (defined as 50% increase) for two kinds of stability (constancy and persistence) under four different life-history/environment combinations. Since these methods have been analytically studied elsewhere, we concentrate on an intuitive understanding of realistic simulations incorporating noise, extinction probability and lattice effect. We show that for these six methods, even when the magnitude of stabilization attained is the same, other aspects of the dynamics like population size distribution can be very different. Consequently, correlated aspects of stability, like the amount of persistence for a given degree of constancy stability (and vice versa) or the corresponding effective population size (a measure of resistance to genetic drift) vary widely among the methods. Moreover, the number of organisms needed to be added or removed to attain similar levels of stabilization also varies for these methods, a fact that has economic implications. Finally, we compare the relative efficiencies of these methods through a composite index of various stability related measures. Our results suggest that lower limiter control (LLC) seems to be the optimal method under most conditions, with the recently proposed adaptive limiter control (ALC) being a close second.

MSC:

92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Allendorf, F. W.; Luikart, G., Conservation and the Genetics of Populations (2007), Blackwell Publishing: Blackwell Publishing Oxford
[2] Andrievskii, B. R.; Fradkov, A. L., Control of chaos: methods and applications. I. Methods, Autom. Remote Control, 64, 673-713 (2003) · Zbl 1107.37302
[3] Andrievskii, B. R.; Fradkov, A. L., Control of chaos: methods and applications. II. applications, Autom. Remote Control, 65, 505-533 (2004) · Zbl 1115.37315
[6] Becks, L.; Hilker, F. M.; Malchow, H.; Jürgens, K.; Arndt, H., Experimental demonstration of chaos in a microbial food web, Nature, 435, 1226-1229 (2005)
[7] Brännström, Å.; Sumpter, D. J.T., The role of competition and clustering in population dynamics, Proc. R. Soc. Lond., Ser. B: Biol. Sci., 272, 2065-2072 (2005)
[8] Carmona, P.; Franco, D., Control of chaotic behaviour and prevention of extinction using constant proportional feedback, Nonlinear Anal.: Real World Appl., 12, 3719-3726 (2011) · Zbl 1231.93057
[9] Corron, N. J.; Pethel, S. D.; Hopper, B. A., Controlling chaos with simple limiters, Phys. Rev. Lett., 84, 3835-3838 (2000)
[10] Dattani, J.; Blake, J. C.H.; Hilker, F. M., Target-oriented chaos control, Phys. Lett. A, 375, 3986-3992 (2011) · Zbl 1254.92075
[11] Denney, N. H.; Jennings, S.; Reynolds, J. D., Life-history correlates of maximum population growth rates in marine fishes, Proc. R. Soc. Lond., Ser. B: Biol. Sci., 269, 2229-2237 (2002)
[12] Desharnais, R. A.; Costantino, R. F.; Cushing, J. M.; Henson, S. M.; Dennis, B., Chaos and population control of insect outbreaks, Ecol. Lett., 4, 229-235 (2001)
[13] Dey, S.; Joshi, A., Stability via asynchrony in Drosophila metapopulations with low migration rates, Science, 312, 434-436 (2006)
[14] Dey, S.; Joshi, A., Local perturbations do not affect stability of laboratory fruitfly metapopulations, PLoS One, 2, e233 (2007)
[15] Dey, S., Joshi, A., 2013. Effects of Constant Immigration on the Dynamics and Persistence of Stable and Unstable Drosophila; Dey, S., Joshi, A., 2013. Effects of Constant Immigration on the Dynamics and Persistence of Stable and Unstable Drosophila
[16] Dey, S.; Prasad, N. G.; Shakarad, M.; Joshi, A., Laboratory evolution of population stability in Drosophila: constancy and persistence do not necessarily coevolve, J. Anim. Ecol., 77, 670-677 (2008)
[17] Domokos, G.; Scheuring, I., Discrete and continuous state population models in a noisy world, J. Theor. Biol., 227, 535-545 (2004) · Zbl 1439.92152
[18] Franco, D.; Hilker, F. M., Stabilizing populations with adaptive limiters: prospects and fallacies, SIAM J. Appl. Dyn. Syst. (2014) · Zbl 1301.92062
[19] Franco, D.; Hilker, F. M., Adaptive limiter control of unimodal population maps, J. Theor. Biol., 337, 161-173 (2013) · Zbl 1411.92247
[20] Franco, D.; Liz, E., A two-parameter method for chaos control and targeting in one-dimensional maps, Int. J. Bifurc. Chaos, 23, 1350003 (2013) · Zbl 1270.37026
[21] Fryxell, J. M.; Smith, I. M.; Lynn, D. H., Evaluation of alternate harvesting strategies using experimental microcosms, Oikos, 111, 143-149 (2005)
[22] Gillespie, J. H., Population Genetics: A Concise Guide (1998), Johns Hopkins University Press: Johns Hopkins University Press Baltimore
[23] Griffen, B. D.; Drake, J., Extinction in experimental populations, J. Anim. Ecol., 77, 1274-1287 (2008)
[24] Grimm, V.; Wissel, C., Babel, or the ecological stability discussions: an inventory and analysis of terminology and a guide for avoiding confusion, Oecologia, 109, 323-334 (1997)
[25] Grimm, V.; Wissel, C., The intrinsic mean time to extinction: a unifying approach to analyzing persistence and viability of populations, Oikos, 105, 501-511 (2004)
[26] Gusset, M.; Jakoby, O.; Müller, M. S.; Somers, M. J.; Slotow, R., Dogs on the catwalk: modelling re-introduction and translocation of endangered wild dogs in South Africa, Biol. Conserv., 142, 2774-2781 (2009)
[27] Güémez, J.; Matías, M. A., Control of chaos in uni-dimensional maps, Phys. Lett. A, 181, 29-32 (1993)
[28] Hare, M. P.; Nunney, L.; Schwartz, M. K.; Ruzzante, D. E.; Burford, M., Understanding and estimating effective population size for practical application in marine species management, Conserv. Biol., 25, 438-449 (2011)
[29] Hastings, A., Transients: the key to long-term ecological understanding?, Trends Ecol. Evol., 19, 39-45 (2004)
[30] Henson, S. M.; Costantino, R. F.; Cushing, J. M.; Desharnais, R. F.; Dennis, B., Lattice effects observed in chaotic dynamics of experimental populations, Science, 294, 602-605 (2001)
[31] Hilker, F. M.; Westerhoff, F. H., Control of chaotic population dynamics: ecological and economic considerations, Beitraege des Instituts fuer Umweltsystemforschung, No 32 (2005)
[32] Hilker, F. M.; Westerhoff, F. H., Paradox of simple limiter control, Phys. Rev. E, 73, 052901 (2006)
[35] Hunter, M. L.; Gibbs, J. P., Fundamentals of Conservation Biology (2007), Blackwell Publishing: Blackwell Publishing Oxford
[36] Ives, A. R.; Woody, S. T.; Nordheim, E. V.; Nelson, C.; Andrews, J. H., The synergistic effects of stochasicity and dispersal on population dynamics, Am. Nat., 163, 375-387 (2004)
[37] Lynch, M., Evolution of the mutation rate, Trends Genet., 26, 345-352 (2010)
[38] May, R. M.; Oster, G. F., Bifurcations and dynamic complexity in simple ecological models, Am. Nat., 110, 573-599 (1976)
[39] McCallum, H. I., Effects of immigration on chaotic population dynamics, J. Theor. Biol., 154, 277-284 (1992)
[40] Middleton, D. A.J.; Veitch, A. R.; Nisbet, R. M., The effect of an upper limit to population size on persistence time, Theor. Popul. Biol., 48, 277-305 (1995) · Zbl 0864.92017
[41] Newman, D.; Pilson, D., Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkia pulchella, Evolution, 51, 354-362 (1997)
[42] Ott, E.; Grebogi, C.; Yorke, J. A., Contolling chaos, Phys. Rev. Lett., 64, 1196-1199 (1990) · Zbl 0964.37501
[44] Pyke, G. H., Plague minnow or mosquito fish? A review of the biology and impacts of introduced Gambusia species, Annu. Rev. Ecol., Evol. Syst., 39, 171-191 (2008)
[45] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170, 421-427 (1992)
[46] Ricker, W. E., Stock and recruitment, J. Fish. Res. Board Can., 11, 559-623 (1954)
[47] Sah, P.; Salve, J. P.; Dey, S., Stabilizing biological populations and metapopulations by Adaptive Limiter Control, J. Theor. Biol., 320, 113-123 (2013) · Zbl 1406.92517
[48] Sheeba, V.; Joshi, A., A test of simple models of population growth using data from very small populations of Drosophila melanogaster, Curr. Sci., 75, 1406-1410 (1998)
[49] Sinha, S.; Parthasarathy, S., Controlling chaos in unidimensional maps using constant feedbacks, Phys. Rev. E, 51, 6239-6242 (1995)
[50] Solé, R. V.; Gamarra, J. G.P.; Ginovart, M.; López, D., Controlling chaos in ecology: from deterministic to individual-based models, Bull. Math. Biol., 61, 1187-1207 (1999) · Zbl 1323.92220
[51] Stone, L., Period-doubling reversals and chaos in simple ecological models, Nature, 365, 617-620 (1993)
[52] Stone, L.; Hart, D., Effects of immigration on the dynamics of simple population models, Theor. Popul. Biol., 55, 227-234 (1999) · Zbl 0949.92023
[53] Wagner, C.; Stoop, R., Optimized chaos control with simple limiters, Phys. Rev. E, 63, 017201 (2000)
[54] Wright, S., Evolution in Mendelian populations, Genetics, 16, 97-159 (1931)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.