×

An example of non-uniqueness for generalized Radon transform. (English) Zbl 0792.44004

It is well known that the generalized Radon transformation is invertible in the class of positive analytic functions.
The author proves that a similar result is not true in the class of smooth \((=C^ \infty)\) positive functions.

MSC:

44A12 Radon transform
58C35 Integration on manifolds; measures on manifolds
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bernshtein, I. N.; Gerver, M. L., A problem of integral geometry for a family of geodesics and the inverse kinematic problem of seismology (Russian), Dokl. Akad. Nauk SSSR, 243, No. 2, 302-305 (1978)
[2] [B1] J. Boman,Uniqueness theorems for generalized Radon transforms, inConstructive Theory of Functions ’84, Sofia, 1984 pp. 173-176. · Zbl 0644.44006
[3] [B2] J. Boman,Helgason’s support theorem for Radon transforms—a new proof and a generalization, inMathematical methods in Tomography, Proceedings of a conference held at Oberwolfach 1990, Springer Lecture Notes in Mathematics1497 (1991), 1-5. · Zbl 0772.44003
[4] Boman, J.; Quinto, E. T., Support theorems for real-analytic Radon transforms, Duke Math. J., 55, 943-948 (1987) · Zbl 0645.44001 · doi:10.1215/S0012-7094-87-05547-5
[5] [BQ2] J. Boman and E. T. QuintoSupport theorems for Radon transforms on real-analytic line complexes in three-space, to appear in Trans. Amer. Math. Soc.
[6] Finch, D. V., Uniqueness of the attenuated X-ray transform in the physical range, Inverse Problems, 2, 197-203 (1986) · doi:10.1088/0266-5611/2/2/010
[7] [G] V. Guillemin,On some results of Gelfand in integral geometry, in Proc. Sympos. Pure Math.43 (1985), 149-155. · Zbl 0576.58028
[8] Gel’fand, I. M.; Gindikin, S. G.; Graev, M. I., Integral geometry in affine and projective spaces (Russian), Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, 16, 53-226 (1980) · Zbl 0465.52005
[9] Guillemin, V.; Sternberg, S., Geometric Asymptotics (1977), Providence, Rhode Island: Amer. Math. Soc., Providence, Rhode Island · Zbl 0364.53011
[10] Greenleaf, A.; Uhlmann, G., Non-local inversion formulas for the X-ray transform, Duke Math. J., 58, 205-240 (1989) · Zbl 0668.44004 · doi:10.1215/S0012-7094-89-05811-0
[11] Greenleaf, A.; Uhlmann, G., Microlocal techniques in integral geometry, Integral Geometry and Tomography, 121-135 (1990), Providence, Rhode Island: Amer. Math. Soc., Providence, Rhode Island · Zbl 0801.44002
[12] Helgason, S., Groups and Geometric Analysis (1984), New York: Academic Press, New York · Zbl 0543.58001
[13] Markoe, A.; Quinto, E. T., An elementary proof of local invertibility for generalized and attenuated Radon transforms, SIAM J. Math. Anal., 16, 1114-1119 (1985) · Zbl 0588.44005 · doi:10.1137/0516082
[14] Mukhometov, R. G., The problem of recovery of a two-dimensional Riemannian metric and integral geometry (Russian), Dokl. Akad. Nauk SSSR, 232, No. 1, 32-35 (1977) · Zbl 0372.53034
[15] Mukhometov, R. G., A problem of reconstructing a Riemannian metric (Russian), Sibirsk. Mat. Zh., 22, No. 3, 119-135 (1981) · Zbl 0478.53048
[16] Quinto, E. T., The invertibility of rotation invariant Radon transforms, J. Math. Anal. Appl., 91, 510-522 (1983) · Zbl 0517.44009 · doi:10.1016/0022-247X(83)90165-8
[17] Zalcman, L., Uniqueness and nonuniqueness for the Radon transform, Bull. London Math. Soc., 14, 241-245 (1982) · Zbl 0464.28006 · doi:10.1112/blms/14.3.241
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.