×

Destabilization of a seasonal synchronization in a population model with a seasonally varying Allee effect. (English) Zbl 07764040

Summary: Climate change causing large seasonal fluctuations is likely to lead to an increase in the average threshold of the Allee effect as well as an increase in its seasonal variability. In this paper, we show that a seasonally synchronized predator-prey system can be strongly destabilized by these changes in the threshold of the Allee effect. The typical result first leads to two-year and multiyear cycles by the principle of period doubling on a folded Möbius strip, up to the emergence of a chaotic and hyper-chaotic attractor living close to the trivial equilibrium corresponding to the extinction of populations. Moreover, this instability of the ecosystem can be hidden for a long time and the transition to its basin of attraction can occur by external perturbation in a random and irreversible manner. We also reveal a double folding of the \(1:1\) synchronized cycle manifold inside the corresponding Arnold tongue and hysteresis similar to well-known Duffing oscillator.

MSC:

92Dxx Genetics and population dynamics
34Cxx Qualitative theory for ordinary differential equations
37Gxx Local and nonlocal bifurcation theory for dynamical systems

Software:

MATCONT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] White, E. R.; Hastings, A., Seasonality in ecology: progress and prospects in theory, Ecol. Complex., 44, Article 100867 pp. (2020)
[2] Taylor, R. A.; Sherratt, J. A.; White, A., Seasonal forcing and multi-year cycles in interacting populations: lessons from a predator-prey model, J. Math. Biol., 67, 6, 1741-1764 (2013) · Zbl 1285.34049
[3] Berec, L., Allee effects under climate change, Oikos, 128, 7, 972-983 (2019)
[4] Wittmann, M. J.; Lewis, M. A.; Young, J. D.; Yan, N. D., Temperature-dependent allee effects in a stage-structured model for bythotrephes establishment, Biol. Invasions, 13, 11, 2477-2497 (2011)
[5] McMeans, B. C.; McCann, K. S.; Humphries, M.; Rooney, N.; Fisk, A. T., Food web structure in temporally-forced ecosystems, Trends Ecol. Evol., 30, 11, 662-672 (2015)
[6] Robinet, C.; Liebhold, A.; Gray, D., Variation in developmental time affects mating success and allee effects, Oikos, 116, 7, 1227-1237 (2007)
[7] Gong, X.; Zhang, Z.; Wang, H.; Li, H.; Hu, F.; Liu, M.; Jiang, L.; Chen, X.; Ma, C., Synergies between heat disturbance and inoculum size promote the invasion potential of a bacterial pathogen in soil, Microorganisms, 10, 3, 630 (2022)
[8] Sales, K.; Vasudeva, R.; Dickinson, M. E.; Godwin, J. L.; Lumley, A. J.; Michalczyk, Ł.; Hebberecht, L.; Thomas, P.; Franco, A.; Gage, M. J., Experimental heatwaves compromise sperm function and cause transgenerational damage in a model insect, Nat. Commun., 9, 1, 1-11 (2018)
[9] Elliott, K. H.; Betini, G. S.; Norris, D. R., Fear creates an allee effect: experimental evidence from seasonal populations, Proc. R. Soc. Lond. B, Biol. Sci., 284, 1857, Article 20170878 pp. (2017)
[10] Tkadlec, E.; Stenseth, N. C., A new geographical gradient in vole population dynamics, Proc. R. Soc. Lond. B, Biol. Sci., 268, 1476, 1547-1552 (2001)
[11] Tkadlec, E.; Bejček, V.; Flousek, J.; Št’astnỳ, K.; Zima, J.; Sedláček, F., Long-term population dynamics of the field vole from the czech republic, Julius-Kühn-Archiv, 432, 89 (2011)
[12] Jacob, J.; Imholt, C.; Caminero-Saldaña, C.; Couval, G.; Giraudoux, P.; Herrero-Cófreces, S.; Horváth, G.; Luque-Larena, J. J.; Tkadlec, E.; Wymenga, E., Europe-wide outbreaks of common voles in 2019, J. Pestic. Sci., 93, 2, 703-709 (2020)
[13] Gragnani, A.; Rinaldi, S., A universal bifurcation diagram for seasonally perturbed predator-prey models, Bull. Math. Biol., 57, 5, 701-712 (1995) · Zbl 0824.92027
[14] Rinaldi, S.; Muratori, S.; Kuznetsov, Y., Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities, Bull. Math. Biol., 55, 1, 15-35 (1993) · Zbl 0756.92026
[15] Saad, A. B.; Boubaker, O., Bifurcations, chaos and synchronization of a predator-prey system with allee effect and seasonally forcing in prey’s growth rate, Eur. Phys. J. Spec. Top., 227, 7, 971-981 (2018)
[16] Li, X.; Ren, J.; Campbell, S. A.; Wolkowicz, G. S.; Zhu, H., How seasonal forcing influences the complexity of a predator-prey system, Discrete Contin. Dyn. Syst., Ser. B, 23, 2, 785 (2018) · Zbl 1403.37095
[17] Cushing, J.; Henson, S. M., Periodic matrix models for seasonal dynamics of structured populations with application to a seabird population, J. Math. Biol., 77, 6, 1689-1720 (2018) · Zbl 1404.92147
[18] Gilg, O.; Sittler, B.; Hanski, I., Climate change and cyclic predator-prey population dynamics in the high arctic, Glob. Change Biol., 15, 11, 2634-2652 (2009)
[19] Sokame, B. M.; Tonnang, H. E.; Subramanian, S.; Bruce, A. Y.; Dubois, T.; Ekesi, S.; Calatayud, P.-A., A system dynamics model for pests and natural enemies interactions, Sci. Rep., 11, 1, 1-14 (2021)
[20] Stouffer, D. B.; Wainwright, C. E.; Flanagan, T.; Mayfield, M. M., Cyclic population dynamics and density-dependent intransitivity as pathways to coexistence between co-occurring annual plants, J. Ecol., 106, 3, 838-851 (2018)
[21] Eclerová, V.; Přibylová, L.; Botha, A., Embedding nonlinear systems with two or more harmonic phase terms near the Hopf-Hopf bifurcation, Nonlinear Dyn., 1-15 (2022)
[22] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, Applied Mathematical Sciences, vol. 112 (1998), Springer: Springer New York · Zbl 0914.58025
[23] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (2002), Springer: Springer New York
[24] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos (2003), Springer: Springer New York · Zbl 1027.37002
[25] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A., MatCont: a Matlab package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Softw., 29, 2, 141-164 (2003) · Zbl 1070.65574
[26] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A.; Meijer, H. G.; Sautois, B., New features of the software MatCont for bifurcation analysis of dynamical systems, Math. Comput. Model. Dyn. Syst., 14, 2, 147-175 (2008) · Zbl 1158.34302
[27] Boukal, D. S.; Berec, L., Single-species models of the allee effect: extinction boundaries, sex ratios and mate encounters, J. Theor. Biol., 218, 3, 375-394 (2002)
[28] Sen, D.; Ghorai, S.; Banerjee, M., Allee effect in prey versus hunting cooperation on predator—enhancement of stable coexistence, Int. J. Bifurc. Chaos, 29, 06, Article 1950081 pp. (2019) · Zbl 1423.34056
[29] Přibylová, L.; Berec, L., Predator interference and stability of predator-prey dynamics, J. Math. Biol., 71, 2, 301-323 (2015) · Zbl 1329.92108
[30] Přibylová, L.; Peniašková, A., Foraging facilitation among predators and its impact on the stability of predator-prey dynamics, Ecol. Complex., 29, 30-39 (2017)
[31] Dawes, J.; Souza, M., A derivation of holling’s type i, ii and iii functional responses in predator-prey systems, J. Theor. Biol., 327, 11-22 (2013) · Zbl 1322.92056
[32] Alves, M. T.; Hilker, F. M., Hunting cooperation and allee effects in predators, J. Theor. Biol., 419, 13-22 (2017) · Zbl 1370.92151
[33] Berec, L., Impacts of foraging facilitation among predators on predator-prey dynamics, Bull. Math. Biol., 72, 94-121 (2010) · Zbl 1184.92048
[34] Arnold, V. I., Geometrical Methods in the Theory of Ordinary Differential Equations, vol. 250 (1982), Springer-Verlag: Springer-Verlag New York, Heidelberg, Berlin
[35] Shilnikov, A.; Šil’nikov, L. P.; Turaev, D., On some mathematical topics in classic synchronization, Citeseer (2003)
[36] Shilnikov, A.; Shilnikov, L.; Turaev, D., On some mathematical topics in classical synchronization.: a tutorial, Int. J. Bifurc. Chaos, 14, 07, 2143-2160 (2004) · Zbl 1077.37509
[37] Afraimovich, V. S.; Hsu, S.-B., Lectures on Chaotic Dynamical Systems, vol. 28 (2003), American Mathematical Soc. · Zbl 1152.37300
[38] Seydel, R., Practical Bifurcation and Stability Analysis, vol. 5 (2009), Springer Science & Business Media
[39] Eclerová, V.; Přibylová, L.; Botha, A., Transformation of master-slave systems with harmonic terms for improved stability in numerical continuation, (15th Chaotic Modeling and Simulation International Conference (2023), Springer), 73-85, ISBN 3031270827, 9783031270826
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.