×

Entropy of negative temperature states for a point vortex gas. (English) Zbl 1428.35267

Summary: We study the dynamics and statistical mechanical equilibria of a neutral two-dimensional point vortex gas with Coulomb-like interactions confined in a squared and a rectangular domain. Using a punctuated Hamiltonian model in which we model the process of vortex-antivortex annihilation in superfluids by removing vortex dipoles, we show that this leads to evaporative heating of the system. Consequently, the vortex gas enters the negative temperature regime and subsequently relaxes to a maximum entropy configuration. We demonstrate that the large scale flows that emerge in this regime can be explained by using an equilibrium statistical mechanical mean field theory of point vortices based on a Poisson-Boltzmann equation. In particular, we observe that the emergent large scale flows in our point vortex simulations in the squared domain give rise to a spontaneous acquisition of angular momentum whereas the flows in the rectangular domain prefers a state with zero angular momentum. In addition to the observed qualitative agreement between the dynamical simulations and the theory that we demonstrate for the two geometries, we also present an approach that allows us to accurately compute a coarse-grained vorticity field, and henceforth recover the entropy from our dynamical runs. This allows us to perform a quantitative comparison between the dynamical point vortex simulations and the statistical mechanical predictions of the mean field theory thereby allowing us to clearly assert the validity of the assumptions of the statistical approaches as applied to this system with long-range interactions.

MSC:

35Q20 Boltzmann equations
82D50 Statistical mechanics of superfluids
76F05 Isotropic turbulence; homogeneous turbulence
76B47 Vortex flows for incompressible inviscid fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Helmholtz, H., No article title, Philos. Mag., 33, 4 (1867) · doi:10.1080/14786446708639824
[2] Kirchhoff, G.: Vorlesungen über Mathematische Physik, 1, (1883) · JFM 08.0542.01
[3] Onsager, L.: Statistical hydrodynamics. Il Nuovo Cimento Series 9 6(2), 279-287 (1949) · doi:10.1007/BF02780991
[4] Taylor, J.B.: Negative temperatures in two-dimensional vortex motion. Phys. Lett. A 40, 1-2 (1972) · doi:10.1016/0375-9601(72)90170-3
[5] Edwards, S.F., Taylor, J.B.: Negative temperature states of two-dimensional plasmas and vortex fluids. Proc. R. Soc. Lond. A 336(1606), 257-271 (1974) · doi:10.1098/rspa.1974.0018
[6] Joyce, G., Montgomery, D.: Negative temperature states for the two-dimensional guiding-centre plasma. J. Plasma Phys. 10, 107-121 (1973) · doi:10.1017/S0022377800007686
[7] Montgomery, D., Joyce, G.: Statistical mechanics of “negativetemperature” states. Phys. Fluids 17(6), 1139 (1974) · doi:10.1063/1.1694856
[8] Pointin, Y.B., Lundgren, T.S.: Statistical mechanics of two-dimensional vortices in a bounded container. Phys. Fluids 19, 1459 (1976) · Zbl 0339.76013 · doi:10.1063/1.861347
[9] Lundgren, T.S., Pointin, Y.B.: Non-gaussian probability distributions for a vortex fluid. Phys. Fluids 20, 356 (1977) · Zbl 0351.76026 · doi:10.1063/1.861874
[10] Lundgren, T.S., Pointin, Y.B.: Statistical mechanics of two-dimensional vortices. J. Stat. Phys. 17, 323-355 (1977) · doi:10.1007/BF01014402
[11] Montgomery, D., Matthaeus, W.H., Stribling, W.T., Martinez, D., Oughton, S.: Relaxation in two dimensions and the Sinh-Poisson equation. Phys. Fluids 4, 3-6 (1992) · Zbl 0850.76485 · doi:10.1063/1.858525
[12] Clercx, H.J.H., Maassen, S.R., van Heijst, G.J.F.: Spontaneous spin-up during the decay of 2d turbulence in a square container with rigid boundaries. Phys. Rev. Lett. 80, 5129-5132 (1998) · doi:10.1103/PhysRevLett.80.5129
[13] Keetels, G.H., Clercx, H.J.H., van Heijst, G.J.F.: Spontaneous angular momentum generation of two-dimensional fluid flow in an elliptic geometry. Phys. Rev. E 78, 036301 (2008) · doi:10.1103/PhysRevE.78.036301
[14] Keetels, G.H., Clercx, H.J.H., van Heijst, G.J.F.: On the origin of spin-up processes in decaying two-dimensional turbulence. Eur. J. Mech. B 29(1), 1-8 (2010) · Zbl 1183.76772 · doi:10.1016/j.euromechflu.2009.06.004
[15] Marchioro, C., Pulvirenti, M.: Hydrodynamics in two dimensions and vortex theory. Commun. Math. Phys. 84, 483-503 (1982) · Zbl 0527.76021 · doi:10.1007/BF01209630
[16] Marchioro, C., Pulvirenti, M.: Euler evolution for singular initial data and vortex theory. Commun. Math. Phys. 91, 563-572 (1983) · Zbl 0529.76023 · doi:10.1007/BF01206023
[17] Robert, R.: A maximum-entropy principle for two-dimensional perfect fluid dynamics. J. Stat. Phys. 65, 531 (1991) · Zbl 0935.76530 · doi:10.1007/BF01053743
[18] Miller, J.: Statistical mechanics of Euler equations in two dimensions. Phys. Rev. Lett. 65, 2137 (1990) · Zbl 1050.82553 · doi:10.1103/PhysRevLett.65.2137
[19] Robert, R., Sommeria, J.: Statistical equilibrium states for two-dimensional flows. J. Fluid Mech. 229, 291 (1991) · Zbl 0850.76025 · doi:10.1017/S0022112091003038
[20] Kiessling, M.K.-H., Wang, Y.: Onsagers ensemble for point vortices with random circulations on the sphere. J. Stat. Phys. 148, 896-932 (2012) · Zbl 1263.82055 · doi:10.1007/s10955-012-0552-4
[21] Chavanis, P.H.: Statistical mechanics of two-dimensional point vortices: relaxation equations and strong mixing limit. Eur. Phys. J. B 87, 81 (2014) · doi:10.1140/epjb/e2014-40869-x
[22] Eyink, G., Sreenivasan, K.R.: Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phys. 78, 87-135 (2006) · Zbl 1205.01032 · doi:10.1103/RevModPhys.78.87
[23] Hadzibabic, Z., Krüger, P., Cheneau, M., Battelier, B., Dalibard, J.: Berezinskii-kosterlitz-thouless crossover in a trapped atomic gas. Nature 441, 1118-1121 (2006) · doi:10.1038/nature04851
[24] Neely, T.W., Bradley, A.S., Samson, E.C., Rooney, S.J., Wright, E.M., Law, K.J.H., Carretero-González, R., Kevrekidis, P.G., Davis, M.J., Anderson, B.P.: Characteristics of two-dimensional quantum turbulence in a compressible superfluid. Phys. Rev. Lett. 111, 235301 (2013) · doi:10.1103/PhysRevLett.111.235301
[25] Samson, E.C., Newman, Z.L., Wilson, K.E., Neely, T.W., Anderson, B.P.: Experimental Methods for Generating Two-Dimensional Quantum Turbulence in Bose-Einstein Condensates, Chap. 7, pp. 261-298 (2007)
[26] Kwon, W.J., Moon, G., Choi, J., Seo, S.W., Shin, Y.: Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates. Phys. Rev. A 90, 063627 (2014) · doi:10.1103/PhysRevA.90.063627
[27] Seo, S.W., Ko, B., Kim, J.H., Shin, Y.: Observation of vortex-antivortex pairing in decaying 2D turbulence of a superfluid gas. Sci. Rep. 7, 4587 (2017) · doi:10.1038/s41598-017-04122-9
[28] Billam, T.P., Reeves, M.T., Anderson, B.P., Bradley, A.S.: Onsager-kraichnan condensation in decaying two-dimensional quantum turbulence. Phys. Rev. Lett. 112, 145301 (2014) · doi:10.1103/PhysRevLett.112.145301
[29] Simula, T., Davis, M.J., Helmerson, K.: Emergence of order from turbulence in an isolated planar superfluid. Phys. Rev. Lett. 113, 165302 (2014) · doi:10.1103/PhysRevLett.113.165302
[30] Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific, Imperial College Press, UK (1999) · Zbl 1016.82500 · doi:10.1142/4090
[31] Froehlich, J., Ruelle, D.: Statistical mechanics of vortices in an inviscid two-dimensional fluid. Commun. Math. Phys. 87, 1-36 (1982) · Zbl 0505.76037 · doi:10.1007/BF01211054
[32] Campbell, L.J., O’Neil, K.: Statistics of two-dimensional point vortices and high-energy vortex states. J. Stat. Phys. 65, 495-529 (1991) · Zbl 0935.82568 · doi:10.1007/BF01053742
[33] Caglioti, E., Lions, P.L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional euler equations: a statistical mechanics description. Commun. Math. Phys. 143, 501-525 (1992) · Zbl 0745.76001 · doi:10.1007/BF02099262
[34] Caglioti, E., Lions, P.L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional euler equations: a statistical mechanics description—part ii. Commun. Math. Phys. 174, 229-260 (1995) · Zbl 0840.76002 · doi:10.1007/BF02099602
[35] Eyink, G.L., Spohn, H.: Negative-temperature states and large-scale, long-lived vortices in two-dimensional turbulence. J. Stat. Phys. 70, 833-886 (1993) · Zbl 0945.82568 · doi:10.1007/BF01053597
[36] Kiessling, M.K.-H.: Statistical mechanics of classical particles with logarithmic interactions. Commun. Pure Appl. Math. 47, 27 (1993) · Zbl 0811.76002 · doi:10.1002/cpa.3160460103
[37] Kiessling, M.K.-H., Lebowitz, J.L.: The micro-canonical point vortex ensemble: beyond equivalence. Lett. Math. Phys. 42, 43-46 (1997) · Zbl 0902.76021 · doi:10.1023/A:1007370621385
[38] Chavanis, P.H., Sommeria, J.: Classification of self-organized vortices in two-dimensional turbulence: the case of a bounded domain. J. Fluid Mech. 314, 267-297 (1996) · Zbl 0864.76037 · doi:10.1017/S0022112096000316
[39] Taylor, J.B., Borchardt, M., Helander, P.: Interacting vortices and spin-up in two-dimensional turbulence. Phys. Rev. Lett. 102, 124505 (2009) · doi:10.1103/PhysRevLett.102.124505
[40] Esler, J.G., Ashbee, T.L., Mcdonald, N.R.: Statistical mechanics of a neutral point-vortex gas at low energy. Phys. Rev. E 88, 012109 (2013) · doi:10.1103/PhysRevE.88.012109
[41] Esler, J.G., Ashbee, T.L.: Universal statistics of point vortex turbulence. J. Fluid Mech. 779, 275-308 (2015) · Zbl 1360.76093 · doi:10.1017/jfm.2015.410
[42] Weiss, J.B., McWilliams, J.C.: Nonergodicity of point vortices. Phys. Fluids A 3(5), 835-844 (1991) · Zbl 0732.76019 · doi:10.1063/1.858014
[43] Chavanis, P.-H.: Statistical Mechanics of Two-Dimensional Vortices and Stellar Systems. Springer, Berlin (2002) · Zbl 1010.35108 · doi:10.1007/3-540-45835-2_8
[44] Esler, J.G.: Equilibrium energy spectrum of point vortex motion with remarks on ensemble choice and ergodicity. Phys. Rev. Fluids 2, 014703 (2017) · doi:10.1103/PhysRevFluids.2.014703
[45] Salman, H., Maestrini, D.: Long-range ordering of topological excitations in a two-dimensional superfluid far from equilibrium. Phys. Rev. A 94, 043642 (2016) · doi:10.1103/PhysRevA.94.043642
[46] Dritschel, D.G., Lucia, M., Poje, A.C.: Ergodicity and spectral cascades in point vortex flows on the sphere. Phys. Rev. E 91, 063014 (2015) · doi:10.1103/PhysRevE.91.063014
[47] Xia, H., Byrne, D., Falkovich, G., Shats, M.: Upscale energy transfer in thick turbulent fluid layers. Nat. Phys. 7, 321-324 (2011) · doi:10.1038/nphys1910
[48] Francois, N., Xia, H., Punzmann, H., Shats, M.: Inverse energy cascade and emergence of large coherent vortices in turbulence driven by faraday waves. Phys. Rev. Lett. 110, 194501 (2013) · doi:10.1103/PhysRevLett.110.194501
[49] Reeves, M.T., Billam, T.P., Xiaoquan, Y., Bradley, A.S.: Enstrophy cascade in decaying two-dimensional quantum turbulence. Phys. Rev. Lett. 119, 184502 (2017) · doi:10.1103/PhysRevLett.119.184502
[50] Reeves, M.T., Billam, T.P., Anderson, B.P., Bradley, A.S.: Inverse energy cascade in forced two-dimensional quantum turbulence. Phys. Rev. Lett. 110, 104501 (2013) · doi:10.1103/PhysRevLett.110.104501
[51] Reeves, M.T., Billam, T.P., Anderson, B.P., Bradley, A.S.: Signatures of coherent vortex structures in a disordered two-dimensional quantum fluid. Phys. Rev. A 89, 053631 (2014) · doi:10.1103/PhysRevA.89.053631
[52] Nowak, B., Schole, J., Sexty, D., Gasenzer, T.: Nonthermal fixed points, vortex statistics, and superfluid turbulence in an ultracold Bose gas. Phys. Rev. A 85, 043627 (2012) · doi:10.1103/PhysRevA.85.043627
[53] Karl, M., Gasenzer, T.: Strongly anomalous non-thermal fixed point in a quenched two-dimensional bose gas. New J. Phys. 19, 093014 (2017) · Zbl 1516.82012 · doi:10.1088/1367-2630/aa7eeb
[54] Book, D.L., Fisher, S., McDonald, B.E.: Steady-state distributions of interacting discrete vortices. Phys. Rev. Lett. 34, 4-8 (1975) · doi:10.1103/PhysRevLett.34.4
[55] Schneider, K., Farge, M.: Final states of decaying 2d turbulence in bounded domains: Influence of the geometry. Physica D 237(14-17), 2228-2233 (2008). Euler Equations: 250 Years On Proceedings of an international conference · Zbl 1143.76469 · doi:10.1016/j.physd.2008.02.012
[56] Bos, W.J.T., Neffaa, S., Kai, S.: Rapid generation of angular momentum in bounded magnetized plasma. Phys. Rev. Lett. 101, 235003 (2008) · doi:10.1103/PhysRevLett.101.235003
[57] Haar, D.T.: Men of Physics: L.D. Landau. Volume 2: Thermodynamics, Plasma Physics and Quantum Mechanics. Pergamon, Oxford, UK (1969)
[58] McDonald, B.E.: Numerical calculation of nonunique solutions of a two-dimensional sinh-poisson equation. J. Comput. Phys. 16(4), 360-370 (1974) · Zbl 0289.65040 · doi:10.1016/0021-9991(74)90045-X
[59] Maestrini, D.: A statistical mechanical approach of self-organization of a quantised vortex gas in a two-dimensional superfluid (2016)
[60] Campbell, L.J., Doria, M.M., Kadtke, J.B.: Energy of infinite vortex lattices. Phys. Rev. A 39, 5436-5439 (1989) · doi:10.1103/PhysRevA.39.5436
[61] Shampine, L.F., Reichelt, M.W.: The matlab ode suite. SIAM J. Sci. Comput. 18(1), 1-22 (1997) · Zbl 0868.65040 · doi:10.1137/S1064827594276424
[62] Silverman, B.W., Green, P.J.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986) · Zbl 0617.62042 · doi:10.1007/978-1-4899-3324-9
[63] Naso, A., Chavanis, P.H., Dubrulle, B.: Statistical mechanics of two-dimensional euler flows and minimum enstrophy states. Eur. Phys. J. B 77, 187-212 (2010) · Zbl 1515.82138 · doi:10.1140/epjb/e2010-00269-0
[64] Lighthill, M.J.: Fourier Analysis and Generalized Functions. Cambridge University Press, Cambridge (1960)
[65] Bouchet, F., Venaille, A.: Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 515, 227-295 (2012) · doi:10.1016/j.physrep.2012.02.001
[66] Shukla, M., Fauve, S., Brachet, M.: Statistical theory of reversals in two-dimensional confined turbulent flows. Phys. Rev. E 94, 061101(R) (2016) · doi:10.1103/PhysRevE.94.061101
[67] Fauve, S., Herault, J., Michel, G., Pétrélis, F.: Instabilities on a turbulent background. JSTAT 26, 064001 (2017) · Zbl 1456.76001 · doi:10.1088/1742-5468/aa6f3d
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.