×

Search of latent periodicity in amino acid sequences by means of genetic algorithm and dynamic programming. (English) Zbl 1359.92088

Summary: The aim of this study was to show that amino acid sequences have a latent periodicity with insertions and deletions of amino acids in unknown positions of the analyzed sequence. Genetic algorithm, dynamic programming and random weight matrices were used to develop a new mathematical algorithm for latent periodicity search. A multiple alignment of periods was calculated with help of the direct optimization of the position-weight matrix without using pairwise alignments. The developed algorithm was applied to analyze amino acid sequences of a small number of proteins. This study showed the presence of latent periodicity with insertions and deletions in the amino acid sequences of such proteins, for which the presence of latent periodicity was not previously known. The origin of latent periodicity with insertions and deletions is discussed.

MSC:

92D20 Protein sequences, DNA sequences
92B15 General biostatistics
90C39 Dynamic programming

Software:

T-REKS; HHrep
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Afreixo, Vera, Paulo J. S. G. Ferreira and Dorabella Santos (2004): “Fourier analysis of symbolic data: a brief review,” Digit. Signal Process, 14, 523-530.; Afreixo, Vera; Ferreira, Paulo J. S. G.; Santos, Dorabella, Fourier analysis of symbolic data: a brief review, Digit. Signal Process, 14, 523-530 (2004)
[2] Almirantis, Yannis, Peter Arndt, Wentian Li and Astero Provata (2014): “Editorial: complexity in genomes,” Comput. Biol. Chem., 53(Pt A), 1-4.; Almirantis, Yannis; Arndt, Peter; Li, Wentian; Provata, Astero, Editorial: complexity in genomes, Comput. Biol. Chem., 53, Pt A, 1-4 (2014) · Zbl 0880.92014
[3] Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman (1990): “Basic local alignment search tool,” J. Mol. Biol., 215, 403-410.; Altschul, S. F.; Gish, W.; Miller, W.; Myers, E. W.; Lipman, D. J., Basic local alignment search tool, J. Mol. Biol., 215, 403-410 (1990)
[4] Andrade, M. A, C. P. Ponting, T. J. Gibson and P. Bork (2000): “Homology-based method for identification of protein repeats using statistical significance estimates,” J. Mol. Biol., 298, 521-537.; Andrade, M. A.; Ponting, C. P.; Gibson, T. J.; Bork, P., Homology-based method for identification of protein repeats using statistical significance estimates, J. Mol. Biol., 298, 521-537 (2000)
[5] Bäck, Thomas (1996): Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms, Oxford, UK: Oxford University Press.; Bäck, Thomas, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms (1996) · Zbl 0877.68060
[6] Banzhaf, Wolfgang, Frank D. Francone, Robert E. Keller and Peter Nordin (1998): Genetic programming: an introduction: on the automatic evolution of computer programs and its applications. San Francisco, CA, USA: Morgan Kaufmann.; Banzhaf, Wolfgang; Francone, Frank D.; Keller, Robert E.; Nordin, Peter, Genetic programming: an introduction: on the automatic evolution of computer programs and its applications (1998) · Zbl 0893.68117
[7] Biegert, A. and J. Söding (2008): “De novo identification of highly diverged protein repeats by probabilistic consistency,” Bioinformatics, 24, 807-814.; Biegert, A.; Söding, J., De novo identification of highly diverged protein repeats by probabilistic consistency, Bioinformatics, 24, 807-814 (2008)
[8] Björklund, Asa K., Diana Ekman and Arne Elofsson (2006): “Expansion of protein domain repeats,” PLoS Comput. Biol., 2:e114.; Björklund, Asa K.; Ekman, Diana; Elofsson, Arne, Expansion of protein domain repeats, PLoS Comput. Biol., 2, e114 (2006)
[9] Boeckmann, Brigitte, A. Bairoch, R. Apweiler, M. C. Blatter, A. Estreicher, E. Gasteiger, M. J. Martin, K. Michoud, C. O’Donovan, I. Phan, S. Pilbout and M. Schneider (2003): “The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003,” Nucleic Acids Res., 31, 365-370.; Boeckmann, Brigitte; Bairoch, A.; Apweiler, R.; Blatter, M. C.; Estreicher, A.; Gasteiger, E.; Martin, M. J.; Michoud, K.; O’Donovan, C.; Phan, I.; Pilbout, S.; Schneider, M., The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003, Nucleic Acids Res., 31, 365-370 (2003)
[10] Dahlstrand, J., L. B. Zimmerman, R. D. McKay and U. Lendahl (1992): “Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments,” J. Cell Sci., 103(Pt 2), 589-597.; Dahlstrand, J.; Zimmerman, L. B.; McKay, R. D.; Lendahl, U., Characterization of the human nestin gene reveals a close evolutionary relationship to neurofilaments, J. Cell Sci., 103, Pt 2, 589-597 (1992)
[11] De Grassi, Anna and Francesca D. Ciccarelli (2009): “Tandem repeats modify the structure of human genes hosted in segmental duplications,” Genome Biol., 10, R137.; De Grassi, Anna; Ciccarelli, Francesca D., Tandem repeats modify the structure of human genes hosted in segmental duplications, Genome Biol., 10, R137 (2009)
[12] Di Domenico, Tomás, E. Potenza, I. Walsh, R. G. Parra, M. Giollo, G. Minervini, D. Piovesan, A. Ihsan, C. Ferrari, A. V. Kajava and S. C. Tosatto (2014): “RepeatsDB: a database of tandem repeat protein structures,” Nucleic Acids Res., 42(D1), D352-D357.; Di Domenico, Tomás; Potenza, E.; Walsh, I.; Parra, R. G.; Giollo, M.; Minervini, G.; Piovesan, D.; Ihsan, A.; Ferrari, C.; Kajava, A. V.; Tosatto, S. C., RepeatsDB: a database of tandem repeat protein structures, Nucleic Acids Res., 42, D1, D352-D357 (2014)
[13] Do Viet, Phuong, Daniel B. Roche and Andrey V. Kajava (2015): “TAPO: a combined method for the identification of tandem repeats in protein structures,” FEBS Lett., 589(19 Pt A), 2611-2619.; Do Viet, Phuong; Roche, Daniel B.; Kajava, Andrey V., TAPO: a combined method for the identification of tandem repeats in protein structures, FEBS Lett., 589, 19, 2611-2619 (2015)
[14] Durbin, R., S. Eddy, A. Krogh and G. Mitchison (1998): Biological sequence analysis: probabilistic models of proteins and nucleic acids, Cambridge, UK: Cambridge University Press.; Durbin, R.; Eddy, S.; Krogh, A.; Mitchison, G., Biological sequence analysis: probabilistic models of proteins and nucleic acids (1998) · Zbl 0929.92010
[15] Ekblom, Robert and Jochen B. W. Wolf (2014): “A field guide to whole-genome sequencing, assembly and annotation,” Evol. Appl., 7, 1026-1042.; Ekblom, Robert; Wolf, Jochen B. W., A field guide to whole-genome sequencing, assembly and annotation, Evol. Appl., 7, 1026-1042 (2014)
[16] Elkins, Patricia A., Y. S. Ho, W. W. Smith,C. A. Janson, K. J. D’Alessio, M. S. McQueney, M. D. Cummings and A. M. Romanic (2002): “Structure of the C-terminally truncated human ProMMP9, a gelatin-binding matrix metalloproteinase,” Acta Crystallogr. D. Biol. Crystallogr., 58(Pt 7), 1182-1192.; Elkins, Patricia A.; Ho, Y. S.; Smith, W. W.; Janson, C. A.; D’Alessio, K. J.; McQueney, M. S.; Cummings, M. D.; Romanic, A. M., Structure of the C-terminally truncated human ProMMP9, a gelatin-binding matrix metalloproteinase, Acta Crystallogr. D. Biol. Crystallogr., 58, Pt 7, 1182-1192 (2002)
[17] Enkhbayar, Purevjav, Kunio Hikichi, Mitsuru Osaki, Robert H. Kretsinger and Norio Matsushima (2006): “3(10)-Helices in proteins are parahelices,” Proteins, 64, 691-699.; Enkhbayar, Purevjav; Hikichi, Kunio; Osaki, Mitsuru; Kretsinger, Robert H.; Matsushima, Norio, 3(10)-Helices in proteins are parahelices, Proteins, 64, 691-699 (2006)
[18] Espada, Rocío, R. G. Parra, M. J. Sippl, T. Mora, A. M. Walczak and D. U. Ferreiro (2015): “Repeat proteins challenge the concept of structural domains,” Biochem. Soc. Trans., 43, 844-849.; Espada, Rocío; Parra, R. G.; Sippl, M. J.; Mora, T.; Walczak, A. M.; Ferreiro, D. U., Repeat proteins challenge the concept of structural domains, Biochem. Soc. Trans., 43, 844-849 (2015)
[19] Fábián, P., V. S. Chauhan and S. Pongor (1994): “Predicted conformation of poly(dehydroalanine): a preference for turns,” Biochim. Biophys. Acta, 1208, 89-93.; Fábián, P.; Chauhan, V. S.; Pongor, S., Predicted conformation of poly(dehydroalanine): a preference for turns, Biochim. Biophys. Acta, 1208, 89-93 (1994)
[20] Fogel, David B. (1998): Evolutionary computation: the fossil record, Hoboken, NJ, USA: Wiley-IEEE Press.; Fogel, David B., Evolutionary computation: the fossil record (1998) · Zbl 0908.68210
[21] Fogel, David B. (2010): Evolutionary computation toward a new philosophy of machine intelligence, Piscataway, NJ, USA: IEEE Press.; Fogel, David B., Evolutionary computation toward a new philosophy of machine intelligence (2010) · Zbl 0926.68052
[22] Gondro, C. and B. P. Kinghorn (2007): “A simple genetic algorithm for multiple sequence alignment,” Genet. Mol. Res., 6, 964-982.; Gondro, C.; Kinghorn, B. P., A simple genetic algorithm for multiple sequence alignment, Genet. Mol. Res., 6, 964-982 (2007)
[23] Heger, Andreas and Liisa Holm (2000): “Rapid automatic detection and alignment of repeats in protein sequences,” Proteins Struct. Funct. Genet., 41, 224-237.; Andreas, Heger; Holm, Liisa, Rapid automatic detection and alignment of repeats in protein sequences, Proteins Struct. Funct. Genet., 41, 224-237 (2000)
[24] Heringa, J. and P. Argos (1993): “A method to recognize distant repeats in protein sequences,” Proteins, 17, 391-41.; Heringa, J.; Argos, P., A method to recognize distant repeats in protein sequences, Proteins, 17, 391-41 (1993)
[25] Holste, Dirk, Ivo Grosse, Stephan Beirer, Patrick Schieg and Hanspeter Herzel (2003): “Repeats and correlations in human DNA sequences,” Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 67(6 Pt 1), 061913.; Holste, Dirk; Grosse, Ivo; Beirer, Stephan; Schieg, Patrick; Herzel, Hanspeter, Repeats and correlations in human DNA sequences, Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 67, 6-1, 061913 (2003)
[26] Jernigan, Kristin K. and Seth R. Bordenstein (2015): “Tandem-repeat protein domains across the tree of life,” PeerJ., 3:e732.; Jernigan, Kristin K.; Bordenstein, Seth R., Tandem-repeat protein domains across the tree of life, PeerJ., 3, e732 (2015)
[27] Jorda, Julien and Andrey V. Kajava (2009): “T-REKS: identification of tandem REpeats in sequences with a K-meanS based algorithm,” Bioinformatics, 25, 2632-2638.; Jorda, Julien; Kajava, Andrey V., T-REKS: identification of tandem REpeats in sequences with a K-meanS based algorithm, Bioinformatics, 25, 2632-2638 (2009)
[28] Jorda, Julien, Bin Xue, Vladimir N. Uversky and Andrey V. Kajava (2010): “Protein tandem repeats - the more perfect, the less structured,” FEBS J., 277, 2673-2682.; Jorda, Julien; Xue, Bin; Uversky, Vladimir N.; Kajava, Andrey V., Protein tandem repeats - the more perfect, the less structured, FEBS J., 277, 2673-2682 (2010)
[29] Kajava, Andrey V. (2012): “Tandem repeats in proteins: from sequence to structure,” J. Struct. Biol., 179, 279-288.; Andrey, KajavaV., Tandem repeats in proteins: from sequence to structure, J. Struct. Biol., 179, 279-288 (2012)
[30] Korotkov, E. V., M. A. Korotkova and N. A. Kudryashov (2003): “Information decomposition method to analyze symbolical sequences,” Phys. Lett. Sect. A Gen. At. Solid State Phys., 312, 198-210.; Korotkov, E. V.; Korotkova, M. A.; Kudryashov, N. A., Information decomposition method to analyze symbolical sequences, Phys. Lett. Sect. A Gen. At. Solid State Phys., 312, 198-210 (2003) · Zbl 1041.68073
[31] Korotkov, E. V., M. A. Korotkova and N. A. Kudryashov (2003): “The informational concept of searching for periodicity in symbol sequences,” Mol. Biol. (Mosk)., 37, 436-451.; Korotkov, E. V.; Korotkova, M. A.; Kudryashov, N. A., The informational concept of searching for periodicity in symbol sequences, Mol. Biol. (Mosk)., 37, 436-451 (2003) · Zbl 1041.68073
[32] Kravatskaya, G. I., Y. V. Kravatsky, V. R. Chechetkin and V. G. Tumanyan (2011): “Coexistence of different base periodicities in prokaryotic genomes as related to DNA curvature, supercoiling, and transcription,” Genomics, 98, 223-231.; Kravatskaya, G. I.; Kravatsky, Y. V.; Chechetkin, V. R.; Tumanyan, V. G., Coexistence of different base periodicities in prokaryotic genomes as related to DNA curvature, supercoiling, and transcription, Genomics, 98, 223-231 (2011)
[33] Kumar, Lokesh, Matthias Futschik and Hanspeter Herzel (2006): “DNA motifs and sequence periodicities,” In Silico Biol., 6, 71-78.; Kumar, Lokesh; Futschik, Matthias; Herzel, Hanspeter, DNA motifs and sequence periodicities, In Silico Biol., 6, 71-78 (2006)
[34] Lee, M. S., G. P. Gippert, K. V Soman, D. A. Case and P. E. Wright (1989): “Three-dimensional solution structure of a single zinc finger DNA-binding domain,” Science, 245, 635-637.; Lee, M. S.; Gippert, G. P.; Soman, K. V.; Case, D. A.; Wright, P. E., Three-dimensional solution structure of a single zinc finger DNA-binding domain, Science, 245, 635-637 (1989)
[35] Lobzin, Vasilii V. and Vladimir R. Chechetkin (2000): “Order and correlations in genomic DNA sequences. the spectral approach,” Uspekhi Fiz. Nauk, 170, 57.; Lobzin V., Vasilii; Chechetkin, Vladimir R., Order and correlations in genomic DNA sequences. the spectral approach, Uspekhi Fiz. Nauk, 170, 57 (2000)
[36] Marcotte, E. M., M. Pellegrini, T. O. Yeates and D. Eisenberg (1999): “A census of protein repeats,” J. Mol. Biol., 293, 151-160.; Marcotte, E. M.; Pellegrini, M.; Yeates, T. O.; Eisenberg, D., A census of protein repeats, J. Mol. Biol., 293, 151-160 (1999)
[37] Mason, Jody M. and Katja M. Arndt (2004): “Coiled coil domains: stability, specificity, and biological implications,” Chembiochem, 5, 170-176.; Mason, Jody M.; Arndt, Katja M., Coiled coil domains: stability, specificity, and biological implications, Chembiochem, 5, 170-176 (2004)
[38] Meng, Tao, Ahmed T. Soliman, Mei-Ling Shyu, Yimin Yang, Shu-Ching Chen, S. S. Iyengar, John S. Yordy and Puneeth Iyengar (2013): “Wavelet analysis in current cancer genome research: a survey,” IEEE/ACM Trans. Comput. Biol. Bioinform., 10, 1442-1459.; Meng, Tao; Soliman, Ahmed T.; Shyu, Mei-Ling; Yang, Yimin; Chen, Shu-Ching; Iyengar, S. S.; Yordy, John S.; Iyengar, Puneeth, Wavelet analysis in current cancer genome research: a survey, IEEE/ACM Trans. Comput. Biol. Bioinform., 10, 1442-1459 (2013)
[39] Mitchell, Melanie (1998): “An introduction to genetic algorithms,”.; Mitchell, Melanie, An introduction to genetic algorithms (1998) · Zbl 0906.68113
[40] Morita, Tomotake, Naotaka Tanaka, Akira Hosomi, Yuko Giga-Hama and Kaoru Takegawa (2006): “An alpha-amylase homologue, aah3, encodes a GPI-anchored membrane protein required for cell wall integrity and morphogenesis in Schizosaccharomyces pombe,” Biosci. Biotechnol. Biochem., 70, 1454-1463.; Tomotake, Morita; Akira Hosomi, Naotaka Tanaka; Giga-Hama, Yuko; Takegawa, Kaoru, An alpha-amylase homologue, aah3, encodes a GPI-anchored membrane protein required for cell wall integrity and morphogenesis in Schizosaccharomyces pombe, Biosci. Biotechnol. Biochem., 70, 1454-1463 (2006)
[41] Mott, R. (1999): “Local sequence alignments with monotonic gap penalties,” Bioinformatics, 15, 455-462.; Mott, R., Local sequence alignments with monotonic gap penalties, Bioinformatics, 15, 455-462 (1999)
[42] Newman, Aaron M. and James B. Cooper (2007): “XSTREAM: a practical algorithm for identification and architecture modeling of tandem repeats in protein sequences,” BMC Bioinformatics, 8, 382.; Newman, Aaron M.; Cooper, James B., XSTREAM: a practical algorithm for identification and architecture modeling of tandem repeats in protein sequences, BMC Bioinformatics, 8, 382 (2007)
[43] Palidwor, Gareth A., Sergey Shcherbinin, Matthew R. Huska, Tamas Rasko, Ulrich Stelzl, Anup Arumughan, Raphaele Foulle, Pablo Porras, Luis Sanchez-Pulido, Erich E. Wanker and Miguel A. Andrade-Navarro (2009): “Detection of alpha-rod protein repeats using a neural network and application to huntingtin,” PLoS Comput. Biol., 5, e1000304.; Gareth, Palidwor; Sergey Shcherbinin, A.; Tamas Rasko, Matthew R. Huska; Anup Arumughan, Ulrich Stelzl; Pablo Porras, Raphaele Foulle; Erich, Luis Sanchez-Pulido; Wanker, E.; Andrade-Navarro, Miguel A., Detection of alpha-rod protein repeats using a neural network and application to huntingtin, PLoS Comput. Biol., 5, e1000304 (2009)
[44] Parra, R. Gonzalo, Rocío Espada, Ignacio E. Sánchez, Manfred J. Sippl and Diego U. Ferreiro (2013): “Detecting repetitions and periodicities in proteins by tiling the structural space,” J. Phys. Chem. B, 117, 12887-12897.; Parra; Gonzalo, R.; Espada, Rocío; Sánchez, Ignacio E.; Sippl, Manfred J.; Ferreiro, Diego U., Detecting repetitions and periodicities in proteins by tiling the structural space, J. Phys. Chem. B, 117, 12887-12897 (2013)
[45] Pellegrini, Marco (2015): “Tandem repeats in proteins: prediction algorithms and biological role,” Front. Bioeng. Biotechnol., 3, 143.; Marco, Pellegrini, Tandem repeats in proteins: prediction algorithms and biological role, Front. Bioeng. Biotechnol., 3, 143 (2015)
[46] Pellegrini, Marco, Maria Elena Renda and Alessio Vecchio (2012): “Ab initio detection of fuzzy amino acid tandem repeats in protein sequences,” BMC Bioinformatics, 13, S8.; Pellegrini, Marco; Renda, Maria Elena; Vecchio, Alessio, Ab initio detection of fuzzy amino acid tandem repeats in protein sequences, BMC Bioinformatics, 13, S8 (2012)
[47] Polyanovsky, Valery O., Mikhail A. Roytberg and Vladimir G. Tumanyan (2011): “Comparative analysis of the quality of a global algorithm and a local algorithm for alignment of two sequences,” Algorithms Mol. Biol., 6, 25.; Polyanovsky, Valery O.; Roytberg, Mikhail A.; Tumanyan, Vladimir G., Comparative analysis of the quality of a global algorithm and a local algorithm for alignment of two sequences, Algorithms Mol. Biol., 6, 25 (2011)
[48] Polyansky, Anton A., Anton O. Chugunov, Alexander A. Vassilevski, Eugene V Grishin and Roman G. Efremov (2012): “Recent advances in computational modeling of α-helical membrane-active peptides,” Curr. Protein Pept. Sci., 13, 644-657.; Anton, Polyansky; Anton, A.; Alexander, O. Chugunov; Eugene, A. Vassilevski; Grishin, V.; Efremov, Roman G., Recent advances in computational modeling of α-helical membrane-active peptides, Curr. Protein Pept. Sci., 13, 644-657 (2012)
[49] Radcliffe, Nicholas J. (1991): “Equivalence class analysis of genetic algorithms,” Complex Syst., 5, 183-205.; Radcliffe, Nicholas J., Equivalence class analysis of genetic algorithms, Complex Syst., 5, 183-205 (1991) · Zbl 0745.92015
[50] Richard, François D. and Andrey V. Kajava (2015): “In search of the boundary between repetitive and non-repetitive protein sequences,” Biochem. Soc. Trans., 43, 807-811.; Richard, François D.; Kajava, Andrey V., In search of the boundary between repetitive and non-repetitive protein sequences, Biochem. Soc. Trans., 43, 807-811 (2015)
[51] Rubinson, Emily H. and Brandt F. Eichman (2012): “Nucleic acid recognition by tandem helical repeats,” Curr. Opin. Struct. Biol., 22, 101-109.; Rubinson, Emily H.; Eichman, Brandt F., Nucleic acid recognition by tandem helical repeats, Curr. Opin. Struct. Biol., 22, 101-109 (2012)
[52] Sawaya, Michael R., W. M. Wojtowicz, I. Andre, B. Qian, W. Wu, D. Baker, D. Eisenberg and S. L. Zipursky (2008): “A double S shape provides the structural basis for the extraordinary binding specificity of Dscam isoforms,” Cell 134, 1007-1018.; Sawaya, Michael R.; Wojtowicz, W. M.; Andre, I.; Qian, B.; Wu, W.; Baker, D.; Eisenberg, D.; Zipursky, S. L., A double S shape provides the structural basis for the extraordinary binding specificity of Dscam isoforms, Cell, 134, 1007-1018 (2008)
[53] Shelenkov, Andrew, Konstantin Skryabin and Eugene Korotkov (2006): “Search and classification of potential minisatellite sequences from bacterial genomes,” DNA Res., 13, 89-102.; Andrew, Shelenkov; Skryabin, Konstantin; Korotkov, Eugene, Search and classification of potential minisatellite sequences from bacterial genomes, DNA Res., 13, 89-102 (2006)
[54] Sippl, Manfred J. and Markus Wiederstein (2012): “Detection of spatial correlations in protein structures and molecular complexes,” Structure, 20, 718-728.; Sippl, Manfred J.; Wiederstein, Markus, Detection of spatial correlations in protein structures and molecular complexes, Structure, 20, 718-728 (2012)
[55] Smith, T. F. and M. S. Waterman (1981): “Identification of common molecular subsequences,” J. Mol. Biol., 147, 195-197.; Smith, T. F.; Waterman, M. S., Identification of common molecular subsequences, J. Mol. Biol., 147, 195-197 (1981)
[56] Söding, Johannes, Michael Remmert and Andreas Biegert (2006): “HHrep: De novo protein repeat detection and the origin of TIM barrels,” Nucleic Acids Res., 34(Web Server issue), W137-W142.; Söding, Johannes; Remmert, Michael; Biegert, Andreas, HHrep: De novo protein repeat detection and the origin of TIM barrels, Nucleic Acids Res., 34, Web Server issue, W137-W142 (2006)
[57] Sosa, Daniela, Pedro Miramontes, Wentian Li, Víctor Mireles, Juan R. Bobadilla and Marco V. José (2013): “Periodic distribution of a putative nucleosome positioning motif in human, nonhuman primates, and archaea: mutual information analysis,” Int. J. Genomics, 2013, 963956.; Sosa, Daniela; Miramontes, Pedro; Li, Wentian; Mireles, Víctor; Bobadilla, Juan R.; José, Marco V., Periodic distribution of a putative nucleosome positioning motif in human, nonhuman primates, and archaea: mutual information analysis, Int. J. Genomics, 2013, 963956 (2013)
[58] de Sousa Vieira, M. (1999): “Statistics of DNA sequences: a low-frequency analysis,” Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics, 60(5 Pt B), 5932-5937.; de Sousa Vieira, M., Statistics of DNA sequences: a low-frequency analysis, Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Topics, 60, 5, 5932-5937 (1999)
[59] Spears, William M. and Kenneth D. De Jong (1991): “On the virtues of parameterized uniform crossover,” Proc. Fourth Int. Conf. Genet. Algorithms, Morgan Kaufmann Publ. Inc. San Fr. CA, USA 230-236.; Spears, William M.; De Jong, Kenneth D., On the virtues of parameterized uniform crossover, Proc. Fourth Int. Conf. Genet. Algorithms, Morgan Kaufmann Publ. Inc. San Fr. CA, USA, 230-236 (1991) · Zbl 1004.68538
[60] Suvorova, Yulia M., Maria A. Korotkova and Eugene V. Korotkov (2014): “Comparative analysis of periodicity search methods in DNA sequences,” Comput. Biol. Chem., 53(Pt A), 43-48.; Suvorova, Yulia M.; Korotkova, Maria A.; Korotkov, Eugene V., Comparative analysis of periodicity search methods in DNA sequences, Comput. Biol. Chem., 53, Pt A, 43-48 (2014)
[61] Sywerda, Gilbert (1989): “Uniform crossover in genetic algorithms,” Proc. Third Int. Conf. Genet. Algorithms, Morgan Kaufmann Publ. Inc. San Fr. CA, USA ©1989 2-9.; Sywerda, Gilbert, Uniform crossover in genetic algorithms, Proc. Third Int. Conf. Genet. Algorithms, Morgan Kaufmann Publ. Inc. San Fr. CA, USA, 2-9 (1989)
[62] Szklarczyk, Radek and Jaap Heringa (2004): “Tracking repeats using significance and transitivity,” Bioinformatics, 20(Suppl 1), i311-i317.; Szklarczyk, Radek; Heringa, Jaap, Tracking repeats using significance and transitivity, Bioinformatics, 20, i311-i317 (2004)
[63] Tiwari, S., S. Ramachandran, A. Bhattacharya, S. Bhattacharya and R. Ramaswamy (1997): “Prediction of probable genes by fourier analysis of genomic sequences,” Comput. Appl. Biosci. CABIOS, 13, 263-270.; Tiwari, S.; Ramachandran, S.; Bhattacharya, A.; Bhattacharya, S.; Ramaswamy, R., Prediction of probable genes by fourier analysis of genomic sequences, Comput. Appl. Biosci. CABIOS, 13, 263-270 (1997)
[64] Turutina, Vera P., Andrew A. Laskin, Nikolay A. Kudryashov, Konstantin G. Skryabin and Eugene V. Korotkov (2006): “Identification of amino acid latent periodicity within 94 protein families,” J. Comput. Biol., 13, 946-964.; Vera, Turutina; Andrew, P.; Nikolay, A. Laskin; Konstantin, A. Kudryashov; Skryabin, G.; Korotkov, Eugene V., Identification of amino acid latent periodicity within 94 protein families, J. Comput. Biol., 13, 946-964 (2006) · Zbl 1097.92023
[65] Wolfner, Mariana F., H. A. Harada, M. J. Bertram, T. J. Stelick, K. W. Kraus, J. M. Kalb, Y. O. Lung, D. M. Neubaum, M. Park and U. Tram (1997): “New genes for male accessory gland proteins in Drosophila melanogaster,” Insect Biochem. Mol. Biol., 27, 825-834.; Wolfner, Mariana F.; Harada, H. A.; Bertram, M. J.; Stelick, T. J.; Kraus, K. W.; Kalb, J. M.; Lung, Y. O.; Neubaum, D. M.; Park, M.; Tram, U., New genes for male accessory gland proteins in Drosophila melanogaster, Insect Biochem. Mol. Biol., 27, 825-834 (1997)
[66] Yang, Ruifeng, S. Bartle, R. Otto, A. Stassinopoulos, M. Rogers, L. Plamann and P. Hartzell (2004): “AglZ Is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus,” J. Bacteriol., 186, 6168-6178.; Yang, Ruifeng; Bartle, S.; Otto, R.; Stassinopoulos, A.; Rogers, M.; Plamann, L.; Hartzell, P., AglZ Is a filament-forming coiled-coil protein required for adventurous gliding motility of Myxococcus xanthus, J. Bacteriol., 186, 6168-6178 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.