×

Multi-material thermomechanical topology optimization with applications to additive manufacturing: design of main composite part and its support structure. (English) Zbl 1436.74056

Summary: This paper presents a density-based topology optimization formulation for the design of multi-material thermoelastic structures. The formulation is written in the form of a multi-objective topology optimization problem that considers two competing objective functions, one related to mechanical performance (mean compliance) and one related to thermal performance (either thermal compliance or temperature variance). To solve the optimization problem, we present an efficient design variable update scheme, which we have derived in the context of the Zhang-Paulino-Ramos (ZPR) update scheme by X. Zhang et al.[“Multi-material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity”, Struct. Multidiscip. Optim. 57, 1, 161–182 (2018; doi:10.1007/s00158-017-1768-3)]. The new update scheme has the ability to solve non-self-adjoint topology optimization problems with an arbitrary number of volume constraints, which can be imposed either to a subset of the candidate materials, or to sub-regions of the design domain, or to a combination of both. We present several examples that explore the ability of the formulation to obtain candidate Pareto fronts and to design support structures for additive manufacturing. Enabled by the ZPR update scheme, we are able to control the complexity and the length scale of the support structures by means of regional volume constraints.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74F05 Thermal effects in solid mechanics
65K05 Numerical mathematical programming methods

Software:

CONLIN; Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zhang, X.; Paulino, G. H.; Ramos, A. S., Multi-material topology optimization with multiple volume constraints: A general approach applied to ground structures with material nonlinearity, Struct. Multidiscip. Optim., 57, 1, 161-182 (2018)
[2] Sanders, E. D.; Aguiló, M. A.; Paulino, G. H., Multi-material continuum topology optimization with arbitrary volume and mass constraints, Comput. Methods Appl. Mech. Engrg., 340, 798-823 (2018) · Zbl 1440.74312
[3] Jiang, Y.; Ramos Jr., A. S.; Paulino, G. H., Topology optimization with design-dependent loading: An adaptive sensitivity-separation design variable update scheme, Struct. Multidiscip. Optim. (2020), in press
[4] Wong, K. V.; Hernandez, A., A review of additive manufacturing, ISRN Mech. Eng., 2012, 1-10 (2012)
[5] Gibson, I.; Rosen, D.; Stucker, B., Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, Vol. 2 (2015), Springer
[6] Zegard, T.; Paulino, G. H., Bridging topology optimization and additive manufacturing, Struct. Multidiscip. Optim., 53, 1, 175-192 (2016)
[7] Qi, J.; Halloran, J., Negative thermal expansion artificial material from iron-nickel alloys by oxide co-extrusion with reductive sintering, J. Mater. Sci., 39, 13, 4113-4118 (2004)
[8] Gaynor, A. T.; Meisel, N. A.; Williams, C. B.; Guest, J. K., Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing, J. Manuf. Sci. Eng., 136, 6, 061015 (2014)
[9] Schumacher, C.; Bickel, B.; Rys, J.; Marschner, S.; Daraio, C.; Gross, M., Microstructures to control elasticity in 3D printing, ACM Trans. Graph., 34, 4, 136 (2015)
[10] Sanders, E. D.; Pereira, A.; Aguiló, M. A.; Paulino, G. H., : an efficient Matlab code for multi-material topology optimization, Struct. Multidiscip. Optim., 58, 6, 2727-2759 (2018)
[11] Rodrigues, H.; Fernandes, P., A material based model for topology optimization of thermoelastic structures, Internat. J. Numer. Methods Engrg., 38, 12, 1951-1965 (1995) · Zbl 0839.73035
[12] Sigmund, O., Design of multiphysics actuators using topology optimization-Part I: One-material structures, Comput. Methods Appl. Mech. Engrg., 190, 49-50, 6577-6604 (2001) · Zbl 1116.74407
[13] Sigmund, O., Design of multiphysics actuators using topology optimization-Part II: Two-material structures, Comput. Methods Appl. Mech. Engrg., 190, 9, 6605-6627 (2001) · Zbl 1116.74407
[14] Du, Y.; Luo, Z.; Tian, Q.; Chen, L., Topology optimization for thermo-mechanical compliant actuators using mesh-free methods, Eng. Optim., 41, 8, 753-772 (2009)
[15] Sigmund, O.; Torquato, S., Composites with extremal thermal expansion coefficients, Appl. Phys. Lett., 69, 21, 3203-3205 (1996)
[16] Sigmund, O.; Torquato, S., Design of materials with extreme thermal expansion using a three-phase topology optimization method, J. Mech. Phys. Solids, 45, 6, 1037-1067 (1997)
[17] de Kruijf, N.; Zhou, S.; Li, Q.; Mai, Y., Topological design of structures and composite materials with multiobjectives, Int. J. Solids Struct., 44, 22-23, 7092-7109 (2007) · Zbl 1166.74407
[18] Faure, A.; Michailidis, G.; Parry, G.; Vermaak, N.; Estevez, R., Design of thermoelastic multi-material structures with graded interfaces using topology optimization, Struct. Multidiscip. Optim., 56, 4, 823-837 (2017)
[19] Xia, Q.; Wang, M., Topology optimization of thermoelastic structures using level set method, Comput. Mech., 42, 6, 837-857 (2008) · Zbl 1163.74540
[20] Li, Q.; Steven, G. P.; Xie, Y. M., Displacement minimization of thermoelastic structures by evolutionary thickness design, Comput. Methods Appl. Mech. Engrg., 179, 3-4, 361-378 (1999) · Zbl 0970.74052
[21] Li, Q.; Steven, G.; Xie, Y., Thermoelastic topology optimization for problems with varying temperature fields, J. Therm. Stresses, 24, 4, 347-366 (2001)
[22] Li, Q.; Steven, G.; Xie, Y.; Querin, O., Evolutionary topology optimization for temperature reduction of heat conducting fields, Int. J. Heat Mass Transfer, 47, 23, 5071-5083 (2004) · Zbl 1083.80008
[23] Takezawa, A.; Yoon, G.; Jeong, S.; Kobashi, M.; Kitamura, M., Structural topology optimization with strength and heat conduction constraints, Comput. Methods Appl. Mech. Engrg., 276, 341-361 (2014) · Zbl 1423.74762
[24] Deaton, J.; Grandhi, R., Stress-based design of thermal structures via topology optimization, Struct. Multidiscip. Optim., 53, 2, 253-270 (2016)
[25] Deng, S.; Suresh, K., Stress constrained thermo-elastic topology optimization with varying temperature fields via augmented topological sensitivity based level-set, Struct. Multidiscip. Optim., 56, 6, 1413-1427 (2017)
[26] Yan, J.; Cheng, G.; Liu, L., A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials, Int. J. Simul. Multidiscip. Des. Optim., 2, 4, 259-266 (2008)
[27] Yan, J.; Guo, X.; Cheng, G., Multi-scale concurrent material and structural design under mechanical and thermal loads, Comput. Mech., 57, 3, 437-446 (2016) · Zbl 1382.74103
[28] Liu, L.; Yan, J.; Cheng, G., Optimum structure with homogeneous optimum truss-like material, Comput. Struct., 86, 13-14, 1417-1425 (2008)
[29] Deng, J.; Yan, J.; Cheng, G., Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material, Struct. Multidiscip. Optim., 47, 4, 583-597 (2013) · Zbl 1274.74327
[30] Gao, T.; Zhang, W., Topology optimization involving thermo-elastic stress loads, Struct. Multidiscip. Optim., 42, 5, 725-738 (2010) · Zbl 1274.74333
[31] Stegmann, J.; Lund, E., Discrete material optimization of general composite shell structures, Internat. J. Numer. Methods Engrg., 62, 14, 2009-2027 (2005) · Zbl 1118.74343
[32] Lund, E.; Stegmann, J., On structural optimization of composite shell structures using a discrete constitutive parametrization, Wind Energy, 8, 109-124 (2005)
[33] Gao, T.; Xu, P.; Zhang, W., Topology optimization of thermo-elastic structures with multiple materials under mass constraint, Comput. Struct., 173, 150-160 (2016)
[34] Allaire, G.; Bogosel, B., Optimizing supports for additive manufacturing, Struct. Multidiscip. Optim., 58, 6, 2493-2515 (2018)
[35] Allaire, G.; Dapogny, C.; Estevez, R.; Faure, A.; Michailidis, G., Structural optimization under overhang constraints imposed by additive manufacturing technologies, J. Comput. Phys., 351, 295-328 (2017) · Zbl 1375.74076
[36] Mirzendehdel, A. M.; Suresh, K., Support structure constrained topology optimization for additive manufacturing, Computer-Aided Design, 81, 1-13 (2016)
[37] Bourdin, B., Filters in topology optimization, Internat. J. Numer. Methods Engrg., 50, 9, 2143-2158 (2001) · Zbl 0971.74062
[38] Bendsøe, M. P., Optimal shape design as a material distribution problem, Struct. Optim., 1, 193-202 (1989)
[39] Bendsøe, M. P.; Sigmund, O., Material interpolation schemes in topology optimization, Arch. Appl. Mech., 69, 9-10, 635-654 (1999) · Zbl 0957.74037
[40] Fleury, C., CONLIN: An efficient dual optimizer based on convex approximation concepts, Struct. Optim., 1, 2, 81-89 (1989)
[41] Fleury, C.; Braibant, V., Structural optimization: A new dual method using mixed variables, Internat. J. Numer. Methods Engrg., 23, 3, 409-428 (1986) · Zbl 0585.73152
[42] Svanberg, K., The method of moving asymptotes—A new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 2, 359-373 (1987) · Zbl 0602.73091
[43] P. Duysinx, W. Zhang, C. Fleury, V.H. Nguyen, S. Haubruge, A new separable approximation scheme for topological problems and optimization problems characterized by a large number of design variables, in: Proceedings of the First World Congress of Structural and Multidisciplinary Optimization (WCSMO1), 1995, pp. 1-8.
[44] Broyden, C. G., The convergence of a class of double-rank minimization algorithms 1. General considerations, IMA J. Appl. Math., 6, 1, 76-90 (1970) · Zbl 0223.65023
[45] Fletcher, R., A new approach to variable metric algorithms, Comput. J., 13, 3, 317-322 (1970) · Zbl 0207.17402
[46] Goldfarb, D., A family of variable-metric methods derived by variational means, Math. Comp., 24, 109, 23-26 (1970) · Zbl 0196.18002
[47] Shanno, D. F., Conditioning of quasi-Newton methods for function minimization, Math. Comp., 24, 111, 647-656 (1970) · Zbl 0225.65073
[48] Bendsøe, M. P., Optimization of Structural Topology, Shape, and Material, Vol. 414 (1995), Springer · Zbl 0822.73001
[49] Groenwold, A. A.; Etman, L. F.P., On the equivalence of optimality criterion and sequential approximate optimization methods in the classical topology layout problem, Internat. J. Numer. Methods Engrg., 73, 3, 297-316 (2008) · Zbl 1221.74065
[50] Guest, J. K., Imposing maximum length scale in topology optimization, Struct. Multidiscip. Optim., 37, 5, 463-473 (2009) · Zbl 1274.74336
[51] Fernández, E.; Collet, M.; Bauduin, S.; Lemaire, E.; Duysinx, P., Contributions to handle maximum size constraints in density-based topology optimization, (Proceedings of the 12th World Congress of Structural and Multidisciplinary Optimization (WCSMO12) (2017), Springer), 1054-1068
[52] Bruggi, M.; Parolini, N.; Regazzoni, F.; Verani, M., Topology optimization with a time-integral cost functional, Finite Elem. Anal. Des., 140, 11-22 (2018)
[53] Talischi, C.; Paulino, G. H.; Pereira, A.; Menezes, I. F.M., : a general-purpose mesh generator for polygonal elements written in Matlab, Struct. Multidiscip. Optim., 45, 3, 309-328 (2012) · Zbl 1274.74401
[54] W.J. Eugster, Road and bridge heating using geothermal energy. Overview and examples, in: Proceedings of the European Geothermal Congress 2007, Unterhaching, Germany, 2007, pp. 1-5.
[55] Gersborg-Hansen, A.; Bendsøe, M.; Sigmund, O., Topology optimization of heat conduction problems using the finite volume method, Struct. Multidiscip. Optim., 31, 4, 251-259 (2006) · Zbl 1245.80011
[56] Alexandersen, J.; Sigmund, O.; Aage, N., Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection, Int. J. Heat Mass Transfer, 100, 876-891 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.